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Abstract

This paper presents an adaptive robotic swarm of Unmanned Aerial Vehicles (UAVs) enabling
communications between separated non-swarm devices. The swarm nodes utilise machine
learning and hyper-heuristic rule evolution to enable each swarm member to act appropriately
for the given environment. The contribution of the machine learning is verified with an
exploration of swarms with and without this module. The exploration finds that in challenging
environments the learning greatly improves the swarm’s ability to complete the task. The
swarm evolution process of this study is found to successfully create different data transfer
methods depending on the separation of non-swarm devices and the communication range of
the swarm members. This paper also explores the resilience of the swarm to agent loss, and
the scalability of the swarm in a range of environment sizes. In regard to resilience, the swarm
is capable of recovering from agent loss and is found to have improved evolution. In regard to
scalability, the swarm is observed to have no upper limit to the number of agents deployed in
an environment. However, the size of the environment is seen to be a limit for optimal swarm
performance.

Introduction
Augmenting Mobile ad hoc network (MANET) topologies with unmanned autonomous vehicles has
recently been investigated in the literature (Llorca, Milner & Davis, 2007 [8]; Fraser & Hunjet, 2016 [9];
Zhang & Quilling, 2011 [10]; Dixon & Frew, 2007 [11]; Henkel & Brown, 2008 [12]; Zhao, Ammar & Zegura,
2004 [13]; Zhao & Ammar, 2003 [14]). The techniques found include: distributed optimisation (to
increase network survivability); relay chaining Unmanned Aerial Vehicles (UAVs); and data ferrying
when connectivity cannot be maintained. Each of these techniques addresses the networking
problem well in its specific context, but does not operate well in alternative environments; e.g. a
distributed optimisation method for increasing survivability is not applicable to a disconnected
network where data ferrying is necessary. Such techniques can be considered expert-system-type
approaches and suffer from the no free lunch dilemma (Wolpert & Macready, 1997 [15]), in which any
one method will solve some problems well but perform poorly in others. This issue is not confined to
the communications domain, existing in many disciplines. Hyper-heuristic (HH) approaches, which
allow for generation and real-time selection of heuristics to address a given problem space, have
recently been proposed as a method to address this issue (Poli & Graff, 2009 [16]).
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In this paper, we examine mobile networking devices for sparse communication. Within this domain
UAVs can aid in data communication between two nodes via relay or ferry methods, with the former
having lower packet delays, and the latter spanning greater distances. Prior works (Henkel & Brown,
2008 [12]) have addressed communications using one or the other. However, for an agent to make this
decision autonomously, apt network information and prior human control must define the network
circumstances for each method to be used. This is time consuming and requires extensive testing.
Finally, if a collection of agents select from a discrete set of transfer methods, the group will require
unification of action selection via a plan consensus, such as auctioning (Pourpanah, Tan, Lim &
Mohamad-Saleh, 2017 [17]) or voting (Valentini, Ferrante, Hamann & Dorigo, 2015 [18]). This will, in
turn, require a high level of shared environment knowledge, as agents must make an educated
assessment. This combination of environment knowledge and action planning comes at a large inter-
group communication cost, which is undesirable in restricted communication environments and is not
scalable.

To counter the above issues Swarm Robotics is a growing research topic. Swarms have a basic
control system which, when implemented in large groups, exhibits emergent behaviour. That is,
these units can individually perform basic tasks, which collectively produce complex global results.
These swarms are praised for being decentralised, robust, scalable and flexible (Brambilla, Ferrante,
Birattari & Dorigo, 2013 [19]). However, standard swarm design requires detailed testing and
evaluation to develop these emergent behaviours. By having the swarm learn and evolve individually
it is believed the robustness and flexibility will increase, while maintaining scalability and reducing the
need for manual adjustment. The main contribution of this paper is the development of a simulated
learning and evolving swarm, which must transfer a number of data packets between source and
sink network â ​​base stationsâ ​​ out of communication range with one another. A swarm of the
proposed robotic agents evolves rule-sets and learns appropriate rules for transferring the time-
insensitive packets via requesting transmission from the bases, transmitting amongst themselves,
and moving about the environment. The novelty of this intelligent swarm is the combination of
standard swarm properties with online (during operation) reinforcement learning, and offline (post-
operation) heuristic evolution. To fully explore the value of this combination, evolution experiments
without the learning process are also conducted.

The remainder of this paper is structured as follows: a background of UAV data transfer methods,
collaborative agents, rule learning and HH is given in Related work; the swarm agent design,
including agent knowledge, action processing, and learning/evolving, is presented in System design;
further specifications of the communication bridging problem and reward function are presented in
Application scenario; details and results of the experiments explored in this study are presented in
Experiment Setup and Experimental Results; and finally the paper is concluded in Conclusion and
Future Work.

Related Work
The two most popular methods in the literature of having a MANET of UAVs transfer data between
geographically dispersed network nodes are relaying and ferrying.
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Relaying (Llorca et al., 2007 [8]; Zhang & Quilling, 2011 [10]; Dixon & Frew, 2007 [11]; Henkel & Brown,
2008 [12]; Lee, Fekete & McLurkin, 2016 [20]; Mehrjoo, Sarrafzadeh, & Mehrjoo, 2015 [21]) sees the
agent place itself between the two nodes, thus halving the transmission distance each packet must
be sent per hop. A collection of units may evenly disperse about this distance, creating a multi-hop
chain (Llorca et al., 2007 [8]; Dixon & Frew, 2007 [11]). However, the relay method is range-limited,
based on the number of relays used. Each relay in the chain must have a receiver and sender
neighbour: thus, the maximum range of the relay system is RÂ·(k+1), where R is the stable
communication range of the relays, and k is the number of relays.

The ferry method (Fraser & Hunjet, 2016 [9]; Henkel & Brown, 2008 [12]; Zhao et al., 2004 [13]) has each
agent move to be in range of the transmitting device, where it collects a number of packets equal to
its buffer size. The agent then physically moves toward the receiver and, upon communication-link
establishment, will transfer the buffer content. In conveyor belt ferry (Henkel & Brown, 2008 [12]) each
agent makes this full travel, while in Newtonâ ​​s cradle (Fraser & Hunjet, 2016 [9]) each unit ferries from
the closest sending neighbour to the closest receiving neighbour. This sub-method of ferrying can be
seen as a hybridisation of ferry and relay, though is only one possible splicing. In general, the ferry
method has much greater delay time and energy consumption, but can span much greater distances
(Zhao et al., 2004 [13]).

In Henkel & Brown (2008 [12]), an adaptive agent is proposed that switches between relaying and
ferrying approaches based on distance. However, the work only suggests a binary swap between the
two extremes (relaying and ferrying) rather than utilising features of both. Additionally, the decision of
when to switch methods must be calibrated manually in this approach.

A fleet of adaptive Unmanned Aerial Systems can be thought of as a collection of intelligent agents.
The literature covers multiple philosophies for the implementation of agent coordination. We briefly
describe two of these, swarming and teaming, below. Swarm agents are often very simple, as seen in
Lee et al. (2016 [20]), Mendonca, Chrun, Neves & Arruda (2017 [22]) and Kanakia, Touri & Correll (2016
[23]). These agents lack object permanence via environmental modelling, often use a human-devised
hard-coded action rule list, or have limited direct messaging between members. Furthermore, the
actions performed by the agents are often not selected to explicitly solve a goal. Rather actions are
triggered via stimuli. These stimuli-action relations are often set by humans to orchestrate a greater
swarm behaviour (emergent behaviour), which leads the swarm to achieve an objective of which the
agents have no understanding. Consider as an example swarm taxies (Timmis, Ismail, Bjerknes &
Winfield, 2016 [24]), in which units fluctuate between travelling toward and away from the swarm
centre. When a light source varies the ratios of these two actions, the swarm can drift toward an
illuminated goal location without the agents directly attempting to do so.

A team of intelligent agents (Johnson, Choi, & How, 2016 [25]; Riccio, Borzi, Gemignani, & Nardi, 2016
[26]) will have a collection of independently capable agents interact. These agents often have shared
operational plans and detailed environment model sharing. Some promote consensus or distributed
optimisation-based methodologies (Johnson et al., 2016 [25]). Such approaches require time to reach
a decision, high network bandwidth, and complex onboard computations. These methods may also
be vulnerable to malicious data injection, which would confuse or stall the group (Rada-Vilela,
Johnston & Zhang, 2014 [27]). Additionally, some approaches require rendezvous (Lee et al., 2016 [20])
of the agents, which creates a failure chain-reaction, as one member failing will cause rendezvous
members to stall in a waiting state.
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In this paper we propose the first design of a robotic agent with the strengths of both approaches,
namely: the complex problem solving of team robotics; and the robustness, scalability, flexibility and
decentralisation (Å ​ahin, 2004 [28]) of swarm robotics. By using swarms with emergent behaviours,
online planning is not required and the swarm is not affected by the above issues.

Machine learning (ML) is a common approach applied to complex problem-solving in the literature.
Action rules are used in Markovian Decision ML, such as Monte Carlo Tree Search (Ayob & Kendall,
2003 [29]; Kao, Wu, Yen & Shan, 2013 [30]; Gelly et al., 2012 [31]) and Temporal Learning (SzepesvÃ¡ri,
2010 [32]). In these studies, a rule links a single state to an action, with a state fully defining all
variables of the agent and observed environment at the time-step. In this paper we propose agents
hold a collection of rules, with each linking a state condition and an action to perform. That is, rule p =
{c,a}, where c defines only some of the variables of a full agent state, and a is a specific action from
all actions, A. The rule is scored via the reward of the action.

One approach for creating these rules is heuristic generation (LÃ¸kketangen & Olsson, 2010 [33];
Keller & Poli, 2007 [34]; Bader-El-Den, Poli & Fatima, 2009 [35]; Burke, Hyde, & Kendall, 2012 [36]). In
this approach the known heuristic methods, here ferrying and relaying, are broken into components.
The system creates its own heuristic by randomly re-assembling these components into a set of
rules. This has been noted in the literature to be much more computationally expensive than
selecting from complete heuristics, though the produced heuristics can be specialised toward a
problem domain (Burke et al., 2013 [37]). Additionally, the granularity of heuristic decomposition is an
important consideration: large granularity will restrict the systemâ ​​s flexibility, while small granularity
can overly expand the search space (Bader-El-Den et al., 2009 [35]).

We argue that the combination of heuristic generation and ML provides a stable yet flexible robotic
swarm, which may more expressly adapt its behaviour to solve data transfer problems.

System Design
This section presents the design of the robotic swarm unit. Each unit holds basic information about
other swarm members and other devices utilised for the problem. In each time step, the swarm
communicates with its peer neighbours (other swarm nodes in range) or moves about the
environment.

Agent Knowledge
Unlike a collection of intelligent agents, the swarm agents of this study have limited sensing ability
and shared information. Each agent is aware of its â ​​neighbourhoodâ ​​, i.e. all agents that are within
communication range, R, at the current time step. Each neighbour advertises its relative location,
including distance and angle, and if it currently holds a data packet. An agent also keeps a record of
all known agents. This record consists of the known agentâ ​​s ID, its last known location, and the age
of the sighting, which is incremented each time step. With this knowledge, an agent is able to plan
movements in relation to others outside its communication range. This memory prevents an agent
becoming stranded, should it stray out of communications range, as seen in (Timmis et al., 2016 [24]).
At each time step all neighbours are added or updated to this known agent list, where newly found
agents are added, and prior known agents are updated with current locations.
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Also within the time step, agents request known agent data from neighbours. At the receipt of this
data, an agent updates its records to reflect the most up-to-date information (consolidating the
records from neighbours and itself, using the record with lowest age). This process allows a co-
swarm memberâ ​​s location to be promulgated through the swarm in a â ​​multi-hopâ ​​, peer-to-peer
fashion. This allows the swarm to make more informed decisions: note that, in the absence of this
information, localised decisions are still made.

Additionally, if a known agent record states an agent should be in communications range, but the
agent is not found during the neighbourhood update, it is assumed that it has moved since the known
location record was made. The entry is thus removed, as it is confirmed to be no longer correct.
Finally, each agent is provided with the sink deviceâ ​​s location, which prevents an environment
searching process to be conducted at the beginning of an experiment.

Action Targeting
Using the above knowledge, an agent will perform actions in relation to fellow swarm members (SMs)
and/or non-swarm devices (bases). To select the target(s) of action focus, the following filters and
selectors are used: agent type, direction and position. These restrictions allow the action to be more
specific in its application, and thus more complicated behaviours to be performed by the swarm. The
agent type filter restricts the interactions to only SMs, only bases, or both (no filter). The direction
filter restricts to only SMs/bases toward or away from the sink location (relative to planning agentâ ​​s
position) or any direction. Finally, position defines the single or group of SM/bases to be used for the
action. This requirement finds the member closest to the agent, second closest to the agent, furthest
from the agent, SM/base closest to the sink device, all SMs/bases in communication range, or all
SMs/bases in the known agent list.

With these targeting filters and selection method, an agent is able to define a collection, which may
be of size one, to dictate the focus of the action execution.

Agent Mobility
The movement of agents is limited to attraction and repulsion of targetable agents in the environment
(see Action Targeting). This collaborative movement planning is known as â ​​virtual forcesâ ​​ (Imaizumi,
Murakami, & Uchimura, 2013 [38]; Vieira, Govindan, & Sukhatme, 2013 [39]). Using a target collection,
force vectors are calculated and summed to form a single movement plan as follows:

 

 

 

[40]

where V , V  are the attraction and repulsion force vectors, and p , p  are the locations of the
respective units.

Reinforcement Learning
To learn the best actions to take in each time-step, Q-learning (SzepesvÃ¡ri, 2010) is utilised over
the swarm operation. This learning equation is defined as

                                              Q(c ,a) = Q (c ,a)(1 â ​​ Î±) + Î±(Ï ​ + Î³Â·Max(Q(c ,a)))                        (2)

a r target agent

t t t t+1
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where Q(c,a) is the quality score for rule {c,a} (condition, action), Î³ is the future rule discount factor,
Î± is the learning rate, Ï ​ is the action reward and Max(Q(c ,a)) is the predicted maximum quality
score of the next rule. At each time step a greedy selector is used, selecting the rule with condition c
being true and the greatest Q value. Additionally, an adaptation of QS-learning (Ribeiro, Pegoraro &
Reali Costa, 2002 [41]) is used to accelerate learning. QS-learning is used in Ribeiro et al. (2002 [41]) to
share Q value learning with similar states. In Ribeiro et al. (2002) â ​​similarâ ​​ is defined as
geographically close location states. In this work conditions are explored rather than fully defining
states; therefore QS-learning shares rewards with other true-condition rules which hold matching
actions.

Evolution
After a set number of learning cycles, or when the objective has been completed, the learning
process is ended and the higher level HH Evolution (HHE) is implemented. In this stage, each agent
is judged on its contribution toward the objective(s). Any agent that contributed below the mean has
its rule-set mutated. This requirement prevents the HHE adjusting relatively functional agents.

To determine the quality of each rule, during the simulation a secondary score, HHScore, is assigned
to each rule, in each agent, similar to the Q value. This HHScore uses limited back-propagation
learning, inspired by TD(Î») (SzepesvÃ¡ri, 2010 [32]). In this study, BP is a past-rule depth to back-
propagate with no decay, while traditional TD(Î») back-propagates all rules explored thus far, with a
learning decay rate of Î». It is seen that this adaptation reduces required memory storage of each
agent, as only the last BP rules must be stored. It is also seen that equivalent results will be
produced when Î» â ​​ 0. In this study the HHscore value of the last BP rules is adjusted via

                                                                  HHscore = HHScore + |Ï ​|/Ï ​                               (3)

This inclusion of HHscore allows the offline evolution to find the best over-all rules, rather than only
the best at the end of the simulation. As an example of this HHScore requirement, a â ​​collect from
base stationâ ​​ rule may be Q-value-positive at the start of the simulation, when the action is required;
but the Q-value will become low at the end of the simulation, when there are no packets to collect.
The HHscore of this rule will not so rapidly decrease, and will be reported to the HH evolution as a
quality rule.

During the mutation of an agentâ ​​s rule-set, the rule with lowest HHscore randomly has its condition
or action regenerated.

After these changes are made all agents have rule HHscores and Q-values reset and the operation
is restarted, with the agents at their original geographical position.

To summarise, the Q-learning is a short-term, online learning process, which is used for in-field
action control. The HHE is the long-term improvement, which shifts the available rules towards an
optimal set in the heuristic space. Figure 1 shows the overall cycle of these two iterative processes.

[42]

Figure 1. Flow diagram of both iterative processes

Application scenario

t+1

depth 

depth 
BPdepth 

depth 

t tâ ​​1 
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The Multi-Agent Simulator of Networks (MASON) (Laboratory & the GMU Center for Social
Complexity, 2017 [43]) Java-based discrete event simulator is used to create an experimental
simulation environment to test the proposed approach. As presented in the Introduction section, the
swarm agents are tasked with moving data-packets from a source base to a sink base. As such,
agents can only send and receive packets from neighbouring units. Furthermore, for this experiment,
only one copy of a packet exists at a time, i.e. broadcasting and network flooding are not explored.
This constraint was added to reduce the network load, allowing the swarm to operate in
communication-restricted environments. It should be noted, however, that this restriction will result in
the permanent loss of data if a swarm individual holding the data is lost. Finally, a simplistic network
model is used, assuming symmetrical wireless range.

Wireless range equation
To model the communication range between all nodes, the log-distance path loss model (Rappaport,
1996 [44]) is used. The propagation path loss (in dBm) between nodes is

                                                    P (d) = P (d ) + 10lÂ·log(d/d ) + X(Ï ​) (4)

where P (d ) is the loss at a reference distance, l is the path loss exponent and X(Ï ​) is a
Gaussian random variable, with standard deviation Ï ​. For this study, a Wifly radio module is modelled
(Networks, 2011 [45]). This unit has an effective isotropic radiated power (EIRP) of +12dBm and a
signal strength receiving threshold of -83dbm. This yields a link budget of 95dB.

In this initial testing, the fading variable, X(Ï ​) is set to zero, allowing for agent learning and evolving to
be explored in a stable environment. A high path loss exponent value of 5 is used, representing the
agents operating in an urban environment with high specular reflection (Faria, 2005 [46]).

Reward calculation
In this application the action reward, Ï ​ in (2), is found each time-step via the sum of relevant packet
scores. A packetâ ​​s score, f , at each time-step is defined as

                                                                          fp = dist â ​​ dist                          (5)

where dist is the physical distance from the sink device at time-step t. This is inspired by
geographical routing (Ghafoor, Lloret, Sadiq & Mohammed, 2014 [47]).

This equation scores the packet via the improvement in distance from the sink device within the
time-step.

Each action reward is the sum of an action-cost and rewards from three collections of packets: those
held by the agent throughout the time-step (ph); those newly received by the agent in the time step
(pr); and those sent by the agent in the time step (ps). Additionally, to prevent over scoring, a
symmetric logarithmic function is performed on the packet rewards. The actionâ ​​s fitness, or reward,
thus becomes:

loss,db loss 0 0 db                       

loss,db 0 db 

p

sink,tâ ​​1 sink,t

sink,t 
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[48]

This fitness function requires the packet duplication-free restriction: should packet broadcasting be
permitted, it is theorised all agents will learn and evolve rules to maximise ps based scores. This will
be optimal locally but globally will congest the network.By scoring for sent packets the agent is
encouraged to transfer packets onward; by scoring held packets, the agent is encouraged to move
toward the sink device; by scoring received packets the agent is encouraged to position itself where
other agents may transmit to it. It may be noted that a packet transfer will lead to two rewards: one
agent is rewarded for sending, the other for receiving. This scoring was implemented to encourage
cooperation between swarm members. Finally, by adding an action cost a simulated energy
conservation is implemented into the agent learning. In this study, movement actions will have a
greater cost than transmission actions, which represents the battery consumption difference between
making a fixed-altitude forward motion with a quadcopter and operating a low-range radio adaptor.

Experiment Setup

Behaviour Evolution
In the first experiment, the ability of the swarm to evolve new behaviours to suit different
environments is explored. Therefore, the base units are statically placed at different distances apart:
95, 113 and 128 distance-units. In each of these base deployments, three levels of background RF
noise are explored, giving P (d ) values of: 45 dB, 36 dB and 30 dB. Given the receiver sensitivity
of -83dBm and the path loss model described by (4), this yields a maximum reception range, R, of
10, 15 and 20 units respectively.

These 9 experiments test the ability of the swarm to evolve and learn behaviours appropriate for the
given task.

Mid-flight failure
In the second experiment, the ability of the learning and HHE to cope with losses is tested by the
periodic removal of agents during the simulation. This removal emulates the stochastic and error-
prone environments these agents may be exposed to, including hardware failure, such as batteries
or motors, and unknown hostile activity. When an agent is â ​​removedâ ​​ it is not able to receive or
transmit packets, nor able to announce its presence for neighbourhood updating. However, other
agents do not automatically remove the lost agent from their â ​​known agentâ ​​ lists unless the lost
agentâ ​​s absence is observed, as discussed in subsection Agent Knowledge.

When an agent is lost, two methods are explored for re-populating the swarm: mid-mission and post-
mission re-population. It is assumed an endless supply of agents are held for re-population. In the
former method, the unit deployment system is assumed to be fully aware of the environment and
activates new units, with newly generated rule-sets, one time-step after a unit is removed. The latter
method, post-mission re-population, has the swarm complete the operation with the reduced swarm
size; and only after the evolution process, when the agents are being re-deployed, will new members
be introduced. For this latter re-population method, two sub-approaches are explored: one in which
the new agents generate new rule-sets; and the other with agents being implemented with the rule-
sets of the lost agents, or cloning the lost agent.

Results from this testing aim to explore both the swarmâ ​​s resilience to minor failure and the ability of
the evolutionary algorithm to adjust from a major failure.

loss 0

9



In all the tests, R is set to 15, the distance between bases is 113, and a constant agent removal
interval of 3,000 time-steps is used.

Scalability
As an exploration of the scalability of the swarm, that is, the ability to operate effectively irrespective
of the number of agents implemented in the swarm, the third experiment explores a range of base
separation distances the swarm must cover, with a range of swarm members. This exploration also
furthers the examination of the swarm to adjust its behaviour for a given environment. The swarm
sizes explored are between 2 and 30 swarm members, in increments of 2. The distance the swarm
must transmit data is based on the equal shifting of both the latitude and longitude of one base
agent. This gives total base distances via the hypotenuse of the isosceles right triangle with sides, s,
between 10 and 490, with increments as seen fit. These swarm and environment ranges are seen to
adequately demonstrate the scalability of the swarm, without introducing excessive computation
requirements. In this experiment the background RF noise is set to a constant value, resulting in
R=15 units for communication range between agents.

As a comparison for this exploration, a theoretical, static-behaving relay swarm is examined. Each
static swarm member has an allocated fellow swarm member or base to transmit to, and will only
move to reach communication with this device. As such, the execution time is the maximum agent
movement time, along with the transmission time, which is directly proportional to the number of
packets, which in this study is 20. This leads to a theoretical execution time of

[49]

Learning contribution
The final exploration of this study validates the inclusion of the learning algorithm in the autonomous
behaviour process. In this study, the swarm agents continue to examine rule value via the HHScore
parameter, and undergo HHE. However, in each time-step, rather than selecting rules via the highest
Q-score, agents use a random selection of the rules with true conditions. This increases the
responsibility of the evolution process to create rule-sets that have specific, appropriate rules for all
states observed.

For this test-set, only R = 15 is explored, for the three base distances, 95, 113 and 128.

Settings
In all the tests of this exploration, the Q-learning variables (Î± and Î³) are set to values of 0.1 and 0.9,
respectively. Î³ is set as seen in literature (Ribeiro et al., 2002 [41]), while Î± is tuned for this study.
Online learning rate adjustment is not used in this work, as each problem instance is seen to have a
different optimal learning rate, meaning the required exploration would be too computationally
expensive. As such, the HHE incorporated this static learning into the problem in which it is adapting.
The BP value is set to 10 after exploratory testing. The action cost penalties are 0.9 for
movement, and 0.1 for all other actions. The learning and evolution process is repeated as many
times as possible within 1,000,000 time-steps, a value chosen to ensure reasonable simulation time.

For this study, the swarm is tasked with transferring 20 packets within the time limit, T , which for
the majority of tests is set to 20,000 time-steps. This limit is imposed to have solutions created of
meaningful value and to force a minimum number of evolution steps over the trial. For the scalability
experiment, T is set to 50,000 to accommodate the larger environment navigation time.

depth 

fail

fail 
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For all results, the fitness of each evolved solution is measured via

[50]

where T is the time taken to transfer all packets.

Each agent holds 50 rules. Initially 12 of these are human designed, inspired from ferrying and
relaying heuristics. Some example ferry rules are shown in Algorithm 1. The other 38 rules are
randomly generated at agent initialisation. The random generation process uses a grammar with a
granularity high enough for a large range of rules to be created, without the evolution process being
stalled by an overly broad behaviour space.

 

[51]

In regard to the evolutionary search method, an Adaptive Iteration Limited Threshold Accepting
(AILTA) (Misir, Verbeeck, De Causmaecker & Berghe, 2010 [52]) move acceptance is used for local-
optimal solution exploration.

In all experiments, except scalability, a swarm of 8 units is implemented.

Furthermore, in most experiments, each simulation is run 30 times with different rule generation
seeds. This prevents statistical anomalies and provides adequate data for a 90% confidence value to
be determined. For scalability, only one simulation is run per swarm scale, per environment size, due
to the high volume of simulations required for the experiment.

Experimental Results

Behaviour Evolution
In Figure 2a an example of the evolution process for the first test case is shown. Each change in the
local optima data delivery time (vertical axis) indicates a full simulation run result. From time 0 to
400k new local optima are found approximately every 100k time steps. Then at 500k a local optimum
is found that cannot be surpassed. The system continues to explore without better results, increasing
the acceptable threshold to escape this local optimum with AILTA. At 820k the cusp of a new
solution-space optimal area is found, which leads the evolution to the best-found rule-set at 910k.
This shows that throughout the one million time-steps the system is always evolving and improving,
rather than stagnating at local optima.

[53]

Figure 2. First test set, exploring three swarm unit communication ranges, and three base distances
(â ​​BaseSpanâ ​​)

In Figure 2b the mean best fitness of all 30 evolution executions is shown for the three RF noise
levels and three static base positions, along with 90% confidence intervals. In addition, the red bar
shows the fail-rate (right vertical axis) where failure is defined as the system not evolving a rule-set
which can transfer all packets within the time limit.
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As can be seen for the more challenging scenario instances, with smaller R values and greater base
separation, the system not only takes longer, on average, to complete the data transfer but the
confidence intervals are increased. The former of these issues is expected, as more time-consuming
methods must be used to achieve the objectives. The latter issue indicates that the harder the
problem instance, the more susceptible the swarm is to the rule generator seed. This leads to larger
variations in the solutions found.

[54]

Figure 3. Packet transfer vs time step for post-evolution solutions

In Figure 3 the packet transfer process can be observed by recording the percent of packets
delivered to the sink base over time-steps. These recordings are taken from the post-evolved rule-
sets with noteworthy emergent behaviours. In low communication range tests with a short travel
distance (when bases are 95 units apart), Newtonâ ​​s cradle transfer predominantly emerged, Figure
3a, while larger communication ranges (R=20) allow for relay chains to be established in all base
separations, Figure 3b. The most variant cases are when the two bases are at maximum separation
(128 units), with communication range, R, of 10 or 15. In these tests, relaying is often not achievable,
while standard ferrying is too time-consuming, and is avoided due to high action costs, thus different
ferry-relay hybridisations are evolved, Figure 3c. These data transfer methods have not been found
in the literature and are thus labelled and discussed.

[55]

Figure 4. Swarm visual representation. (Blue circles being the swarm units, black rings being the
unitâ ​​s communication range, larger green circles are base devices, lines between the units/devices
are packet transfers.)

In some cases, swarm ferrying is evolved. This has the swarm as a whole move from source to sink,
while maintaining communication range with one another. When one agent (the source relay) is by
the source, it relays data throughout the swarm until all agents have full buffers. The swarm then
taxis toward the sink and, upon one agent making contact, the data is relayed through this agent.
The swarm as a whole thus has a range of (R, RÃ ​(swarmSize+1)); therefore units have less travel
time than a full ferry process. This method is visualised in Figure 4a.

The second observed behaviour is the semi-chain. In this method the swarm builds relay chains
starting at the sink, source or both. When the swarm size is not great enough to finish the chain, or
some members of the swarm fail to fully extend the chain, the remaining distance is covered by one
or two units ferrying the distance. This is shown in Figure 4b. From these diverse strategies being
formed by the swarm evolution, it can be seen that the desired flexibility of this system is being
achieved.

Some post-evolution, machine-generated rules, which were utilised by specific agents in the swarm
ferrying behaviour, are listed in Algorithm 2 and 3. These rules are more specialised to a specific role
within the swarm, which shows that HHE encourages heterogeneity.

[56]

Mid-flight failure
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The second set of testing shows not only that the introduction of unit losses has minimum effect on
the delivery time, but also has a positive effect on the evolutionary process. For these tests, we
would like to note our previous paper (Smith, Hunjet, Aleti & Barca, 2017 [57]) showed unit removal
had a negative effect on the evolutionary process, and that Post-mission re-population outperformed
Mid-mission re-population. These results have now been found to be incorrect, due to an error in re-
population controls in the simulations. This paper presents the results produced after addressing
said problem.

For most simulation instances the system was found to be resilient to minor losses; producing results
similar to Figure 2a. However, in rare cases a major failure occurred due to specialised swarm
members (see Algorithms 2 and 3) being lost. Figure 5a is an example of one such instance. As can
be seen, the system is improving steadily for the first 100k steps. However, at 120k the specialised
member is lost. This leads the system to fail, with small recoveries over the next 400k steps. At 600k
the swarm evolution process has recovered from the loss, until 800k when a specialist is lost again.
This shows that major failure of the swarm is recoverable by the HHE adjusting the swarm.

Figure 5b shows that, for the first two re-population methods, mid-mission and post-mission with new
unit generation, the 90% confidence interval is improved, compared to the simulations without
member failure, and the mean fitness is reduced for both methods: 0.5% for post-mission and 2.9%
for mid-mission. This suggests that not only can the swarm continue to operate in smaller swarm
sizes, but the increased random agent turn-over aids the evolutionary process.

[58]

Figure 5. Second test, exploring swarm units being removed and new units re-populating the
swarm

The difference in data delivery time between the first two re-population methods can be attributed to
mid-mission always having a swarm at full capacity, while post-mission must complete simulations
with multiple agents lost. Therefore, the reduced swarm can be seen to take longer, with slower
approaches, yet is still capable of completing the task.

The final test case, Clone, in which the lost agentsâ ​​ rule-sets are copied in the post-mission
repopulation process, shows far worse results in both confidence range and mean best-evolved
behaviour fitness. This is found to be due to the evolutionary process being negatively affected by
the reintroduction of behaviours not fully explored in the simulation, resulting in invalid reuse in the
next iteration. It can thus be seen, by comparing the two Post-mission re-population methods, that
introduction of new, unknown rule-sets is preferred over the continued, unwarranted reuse of poorly
performing agents.

Scalability
Figure 6a shows the evolved fitness of the swarm as its scale is increased (horizontal) and the
distance of the bases is increased (vertical). These findings show the swarm is scaling effectively,
with no noted reduction at large swarm sizes. That is, even with 30 agents operating in the smallest
environment, the agents do not hinder one anotherâ ​​s ability to aid in solving the task of data transfer.

In addition, it can be seen that in all swarm sizes explored, a gradual reduction in data transfer is
observed, as all swarm sizes are evolving data ferrying behaviours where appropriate. Only when
the distance becomes too great, relative to the swarm size, does a ferrying behaviour not evolve.
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This ability to evolve ferrying behaviours is further shown in Figure 6b, in which the theoretical relay
behaviour fitness of (7) is compared. In all swarm scales, a positive (blue) comparison is observed in
s values, which prevent pure relaying but allow evolved swarms to transfer via ferrying or ferry-relay
hybrid behaviours.

[59]

Figure 6. Scalability of swarm operations with 2-30 agents, in environments with side lengths and
widths, s, 10-490. a) simulation fitness results, b) comparison of evolved behaviour and theoretical
relay behaviour.

This figure also shows in operations with large Base Ranges, s â ​¥ 200, in which the swarm may
potentially evolve/learn relaying behaviour, swarm scale â ​¥ 20, the full relay is not being
autonomously coordinated and the evolved behaviour is not achieving fitness values equal to the
theoretical relay results. From this, and the prior observation of limited ferry behaviour range, it can
be seen that the proposed autonomous evolving and learning swarm, although performing equally or
better in most ranges, currently has limitations in the size of the environment in which it operates.
This limitation may be due to a reduced evolutionary process, with T set to 50,000 leading to only
20 generations explored. Further exploration is thus required with greater evolution allowances.

Learning contribution
The final exploration of this study is the comparison of the swarm with and without the online,
learning process being implemented during the simulation.

In Figure 7 it can be seen that for small base ranges, 95, where basic relaying behaviours can be
achieved, the learning process contributes little to the swarm, as basic relay behaviours are evolved.
However, as the base range is increased, 113 and 128, relay-ferry hybrid or full ferry behaviours are
required. This leads the non-learning swarm to have far lower fitness values. This indicates that the
process of adjusting the swarm behaviour to meet the requirements of the environment is heavily
reliant on the learning process, particularly when non-direct actions are required: that is, actions
other than moving toward the sink device and transmitting packets in the direction of the sink device.

This exploration shows that for more complex environments, the inclusion of online learning greatly
increases the ability of the swarm to appropriately explore potential behaviours and adjust
accordingly.

[60]

 Figure 7. Comparison of Evolving with Learning vs only Evolving

Conclusion and Future Work
This paper has explored an online-learning, offline-evolving robotic swarm system to enable
communications between disconnected network nodes. The approach was validated by testing in
different environments, with different rule-generator seeds; it was found that this swarming system
was able to adapt its emergent behaviour to effectively transmit data between a source and a sink
node. Furthermore, Figure 2a and section Learning contribution show both the evolution and learning
process are required for successful behaviour adoption. The swarming system is flexible, scalable
and robust, evolving behaviours to best suit the environmental conditions and performing well even
with the random removal of swarm members or with excessive swarm sizes.

fail 
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The evolution method presented here replaces, or at least reduces, the manual heuristic
development process previously required for swarm emergent behaviours to be created. This
approach will thus allow a robotic swarm to be used in new environments, without expert heuristic
engineers, and with a reduction in construction time. It will also allow the environment or the swarm
to change between operations, with the HHE re-designing the rule-sets to maintain an effective
swarm for the next operation.

Future work will introduce Gaussian variation to the propagation path loss of the communications
environment, mobility to the source and sink nodes, and examine the effect on the solutions
generated through variation of the cost penalties assigned to taking specific actions.
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