
Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 92

Policy-based Interaction Model for Detection and

Prediction of Cloud Security Breaches

Sara Farahmandian
Faculty of Engineering and IT, University of Technology Sydney,
Broadway, Ultimo, Sydney, Australia

Doan B. Hoang
Faculty of Engineering and IT, University of Technology Sydney,
Broadway, Ultimo, Sydney, Australia

Abstract: The ever-increasing number and gravity of cyberattacks against the cloud's assets, together

with the introduction of new technologies, have brought about many severe cloud security issues. The

main challenge is finding effective mechanisms for constructing dynamic isolation boundaries for

securing cloud assets at different cloud infrastructure levels. Our security architecture tackles these

issues by introducing a policy-driven interaction model. The model is governed by cloud system

security policies and constrained by cloud interacting entities' locations and levels. Security policies are

used to construct security boundaries between cloud objects at their interaction level. The novel

interaction model relies on its unique parameters to develop an agile detection and prediction

mechanism of security threats against cloud resources. The proposed policy-based interaction model

and its interaction security algorithms are developed to protect cloud resources. The model deals with

external and internal interactions among entities representing diverse participating elements of

different complexity levels in a cloud environment. We build a security controller and simulate various

scenarios for testing the proposed interaction model and security algorithms.

Keywords: Cloud infrastructure, security policies, security isolation, interaction, security

boundaries.

Introduction

Security issues in a virtual cloud environment are more complex and challenging than in traditional

infrastructures since resources are both virtualised and shared among numerous users. As a result,

virtual boundaries among components or participants are not well defined and often undefined, and

hence they not visible or controllable by the providers. In a multi-tenant cloud architecture, isolations

are a crucial concept for both security and infrastructure management. They should be considered at

functional entity levels and appropriate abstraction levels of the infrastructure. Physical isolation is

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 93

relatively simple in traditional environments, as the boundaries between physical elements are well-

defined and visible. The situation is not clear-cut in virtual environments unless one can keep track

of all perimeters of all virtual objects created. Defining object boundaries is extremely difficult

because virtual objects are dynamic in both characteristics and functionality. The task is resource-

expensive due to the sheer number of virtual objects and the complexity of their dynamics. Building

security boundaries is critical not only for recognising security violations but also in creating security

solutions.

Practically, a security breach is defined in terms of the policies that define the interactions related to

the breach. An event is considered a security breach either when it violates a defined security policy

or violates the Confidentiality, Integrity, and Availability of security principles that could have been

avoided if a relevant security policy had been in place. According to Kosiur (2001), a policy (or policy

rule) is a simple declarative statement associating a policy object with a value and a policy rule. In

general, a policy is not easy to work with as, at one extreme, a policy applies to the overall behaviour

of a complex organisation (or entity) and, at the other extreme, it applies to a particular action on an

element of the organisation, or a specific firewall rule on a network connection. To work with policy,

one needs to clearly define the appropriate context in both scope and level; otherwise, it is not very

useful or realisable.

In this paper, the policy context is on the interaction between entities with a defined set of interaction

parameters. Security breaches primarily result from violations of the rule of interaction (or policy

that governs the interaction) between objects when they interact. Unless one has a formal interaction

model between objects, it is difficult to detect, predict, or prevent security incidents. The policy-based

interaction model defines a security breach as when a security policy is violated over an interaction

parameter. It has been recognised that security policies play a crucial role in all secured systems

because they define what constitutes a security breach. In other words, security policies define the

rules for secure interaction between objects of an environment. Security policies define the desired

behaviour of the heterogenous application, systems, networks, and any type of object within the

system.

Policies are complex in terms of definition and implementation in a distributed cloud infrastructure

where resources are shared and dynamically changed. Different policies are often constructed for

different architectural levels of a system, together with enforcement mechanisms. The ever-

increasing number of virtual functions and the dynamic nature of cloud resources introduce more

complexity in defining and enforcing security policies. Enforcing security policies at the interaction

level enables system agility in detecting security breaches in cloud infrastructure. The policy-based

interaction model is appropriate to impose and enforce dynamic, secure interactions among entities.

In this paper, we construct security boundaries dynamically at the interaction level between entities

using the security policies or rules over a proposed interaction model parameter and the constraints

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 94

imposed on the interacting entities. The construction of security boundaries in a cloud system is

related to the characteristics of the interacting entities in the environment and the policies and

constraints that govern their interaction. Our design focuses on building a robust, dynamic, and

automated security boundary to protect cloud assets relying on a solid and innovative interaction

model and security policy expressions that govern the interactions. A security boundary is thus a

function or an expression that defines valid interactions among cloud entities.

The paper focuses on constructing security boundaries according to the interaction model and its

parameters, object constraints, and dynamic security rules related to interaction parameters. We

introduce a policy-driven interaction model that governs the relationship among entities in the cloud

environment and develops algorithms to detect and predict security breaches. The interaction model

is defined by parameters that control activities among components or entities in a cloud system. The

model provides a framework for incorporating system security policies and entity constraints in

constructing interaction boundaries and defining a security dictionary of expected/unexpected

behaviour of cloud entities while accessing resources in the cloud environment. The main

contributions of this research are:

• We propose a novel policy-driven interaction model that governs the interactions among

entities in a cloud environment. According to our best knowledge, this is the first approach to

use interaction parameters for building dynamic and automated security boundaries.

• We deploy an automatic detection and prediction algorithm called interaction security violation

detection and prediction (ISVDP) to identify security breaches related to interaction

parameters. The algorithm also maps out possible future attacks based on expected violations of

the currently defined interaction parameters.

• We evaluate the proposed model and algorithms by implementing and simulating various

interaction scenarios among cloud entities.

The paper is organised as follows. We first describe related work. We then briefly introduce the cloud

object model and components used for the interaction model. After that, we describe the proposed

general interaction model and its parameters. Building on the general interaction model, we then

describe the security policy-based interaction model. We can then introduce our ISVDP algorithms,

which we evaluate by simulating various interaction scenarios. Finally, we provide a conclusion.

Related Work

This section describes related work on cloud security isolation methods and security policy

enforcement methods.

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 95

Cloud resource isolation mechanisms

Mavridis & Karatza (2019) proposed a multi-tenant isolation solution using VMs as the boundary of

security whereby applications run within containers on top of these virtual machines. To improve the

security of running applications as containers in the cloud, running one container per VM was

suggested. However, the drawback of such a system is its performance.

SilverLine (Mundada, Ramachandran, & Feamster, 2011) was proposed for enhancing data and

network isolation for cloud tenant services. The model concentrated on providing isolation via OS-

level and virtual instances. The method only focused on providing data and network isolation at the

tenant level.

A mechanism known as Secure Logical Isolation for Multi-tenancy (SLIM) was introduced by Factor

et al. (2013) as an end-to-end approach to providing isolation among tenant resources. The model

only considered tenant-level isolation. Pfeiffer et al. (2019) proposed a method for solid tenant

separation in cloud platforms by isolating components at the network level. It focused mainly on

tenant separation via physical and cryptographic separation for large infrastructures.

Hoang & Farahmandian (2017) provided a classification of isolation techniques within a cloud

infrastructure and proposed isolation solutions using existing technologies. Del Piccolo et al. (2016)

conducted a research survey on network isolation solutions for multi-tenant data centres for isolating

cloud services. It emphasised the main challenges related to isolation in a multi-tenant environment.

Chen et al. (2016) proposed a Highly Scalable Isolation Architecture for Virtualized Layer-2 Data

Centre Networks. It used Software-Defined Networking (SDN) technology to provide isolation for a

layer-2 data centre at the network level. The model only provided isolation at the network level.

BlueShield was another method to provide isolation and security in a multi-tenant cloud

infrastructure focusing only on network security (Barjatiya & Saripalli, 2012).

Security policy enforcement mechanisms

Karmakar et al. (2016) proposed a policy-based security architecture to secure SDN domains. The

paper defined different modules within a proposed application to determine security policies related

to packets. Wang et al. (2015) introduced a policy space analysis and focused on addressing network

security policy enforcement issues on middle boxes.

Varadharajan et al. (2018) proposed a policy-based security architecture to secure inter- and intra-

domain communication using software-defined networks between different hosts across multiple

domains. Basile et al. (2019) introduced an approach for automatic enforcement of security policies

in network function virtualisation according to dynamic network changes. It deployed virtual security

functions for security policy reinforcement and introduced a security awareness manager in the

orchestrator.

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 96

A cyberspace-oriented access control model (CoAC) was proposed to provide access to sensitive data

(Li et al., 2018). The method considered operations as a combination of many atomic processes and

defined a CoAC policy that permits access only if a particular operation's security risk is below a

defined threshold.

Access control policy enforcement methods

Cai et al. (2018) reviewed existing access models and policies among different application scenarios

focusing on cloud and user requirements. Damiani et al. (2007) proposed a geographical Role-Based

Access Control. It relied on role-based mechanisms and defined constraints according to user location

and position.

Rajkumar & Sandhu (2016) proposed POSTER for enhancing administrative role-based access

control. It has integrated obligations via an administrative model by defining three main obligatory

actions. However, the model only focused on administrative actions within the system. In 2016,

Tarkhanov (2016) addressed the access control difficulties related to objects and linked object states.

The majority of existing research efforts on cloud security focus on users/intruders, traffic

monitoring, and computing entities. Detecting and predicting security breaches based on object

interaction and system policy have not received much attention. A thorough search of relevant

literature yielded the conclusion that this research is the first to define and use interaction parameters

to construct dynamic security boundaries and detect and predict security violations.

Cloud Object Model used for Interaction Model

This section describes the cloud object model and the required components to be used in our

interaction model. Traditional physical security mechanisms are ineffective in dealing with threats

and activities from virtual systems and virtual resource components (Jararweh et al., 2016), as virtual

boundaries between virtual components are not often well defined. The infrastructure desires a

logically centralised security controller with visibility of security boundaries within different layers.

For this purpose, a security model was proposed as a dynamic, intelligent, and automated security

service/model to tackle the mentioned challenges in a multi-tenant cloud infrastructure

(Farahmandian & Hoang, 2017). It provides a security model, and a security service called the

Software-Defined Security Service (SDS2) that applies to the object-oriented entities of a cloud

environment, the interaction among them, and security policies that govern the interaction. The SDS2

provides a security architecture to protect cloud assets with policies mapped to the cloud, tenant, and

resource security policy levels.

The main idea of our centralized model centres around the interaction between constrained entities

and is governed by system security policies for the detection and prediction of security breaches. An

interaction can be defined as a relation between the objects during a specific time slot. To define the

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 97

security boundaries in terms of interaction, the system requires a sustainable object model. In our

security architecture, we define an object as a component or a sub-component, both virtual and

physical, that participates in a cloud environment and can access/be accessed by other objects

according to their properties, security constraints, and system policies. An object has a number of

attributes, some are common among all objects (generic), and some represent specific constraints

and characteristics of the object (specific). Each attribute defines some properties, and hence together

they constitute a boundary for an object relative to other objects in its environment. An object can be

simple or complex. A complex object includes nested attributes and may consist of a set of sub-

objects. An object can be internal or external to a cloud, depending on its role/interaction.

It should be noted that the policy level is related to the role of an object, and location is associated

with the logical or physical location of an object. The security model defines three main objects

associated with the cloud, tenant, and resource security domains. Corresponding objects are Cloud

Object, Tenant Object, and Resource Objects, which include Compute Object, Storage Object,

Network Object, App Object, and User Object. The cloud domain, where cloud objects reside,

classifies all the data, resources, and interactions at the cloud level while ignoring information related

to lower domains like Tenant and Resource. At this level, the main parameters include cloud security

policies (SPs), which govern interaction policies among objects at the cloud level; and data and

resources policies, which concentrate only on cloud resource level (tenant, cloud-

compute, -net, -storage resources). The tenant domain only reflects attributes and parameters related

to the tenant objects in the cloud domain. The focus is only on the tenants’ structure and their

parameters and resources. The resource domain concentrates on the base underlying

physical/virtual resources within the cloud system, as distinct from resources at the cloud and the

tenant domains. They provide detailed information related to each resource object. Resource objects

are defined similarly to cloud objects but for objects in the resource domain.

A role (Rl) assigns some responsibility to an object and the necessary authorities or privileges to

discharge its duty. The role is often not static and may change as circumstances demand. A role may

be simple or complex, assigned to an individual or a group of objects. A role is often associated with

different layers of the architecture of a cloud system. It should be noted that ‘role’ is best defined

using formal logic that entails complex rules to deal with dynamicity and multiple inheritances. In

this paper, we avoid the complexity by simply equating a role with a hierarchical level in our defined

cloud security architecture. Its attributes are defined explicitly when the role is assigned to a cloud

object.

We define an entity (E) as an integrated object consisting of the object’s role and object structure.

The entity is a key concept in our structure to detect and predict security breaches in cloud

infrastructure. The role assigned to the object will be considered based on object level and position

within the system extracted from defined object parameters. An object may be assigned a role or

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 98

group of roles activated at a different system level. Objects may assume more than one role with

different levels of authority in different domains. We use E as the main component within the

interaction model.

Interaction Model

In this section, we introduce our interaction model and its parameters. Security will always be a

concern when entities start interacting with each other and with the infrastructure. In general, an

interaction is an act of performing an action by an object on another. A natural disaster can also be

considered a special interaction between an external object on a set of objects. An action always

entails some effects or consequences. Potential security violations may occur when an interaction

occurs against policies governing the relationship between two or more parties.

Consequently, interactions play a central role in security incidents in a system. The main focus of the

Software-Defined Security Service (SDS2) is on the protection of a cloud system by anticipating

possible security breaches and preventing them from happening. The SDS2 proposes a novel

interaction model that defines exceptional interaction parameters to detect and predict security

violations. The following sub-sections describe a detailed structure of each parameter. The scheme

centres around a new model of interaction, entities connected to a cloud system, and security policies

governing the system.

Table 1. Summary of Notations

Notation Description

𝑬𝒊 Denotes entity i

𝑴 Denotes the interaction mode

𝒎𝒊 A set of mode relation values of the interaction mode

𝒅𝒏 A set of action direction values of the interaction mode

R Denotes the positional interaction relationship

Rl Refers to a set of roles of an object

𝒓𝒏 A set of positional relation values of R

T
Refers to interaction time consisting of 𝑡𝑠(𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒), 𝑡𝑒(𝑒𝑛𝑑 𝑡𝑖𝑚𝑒), 𝑡𝑑(𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒),
and 𝛼 (𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒)

𝑨 Represents a set of all possible actions

P Refers to system security policy

C Refers to entities’ constraints

𝐒𝐤 Refers to set of security policies on k

𝑳𝒌 Refers to location-based security policy of interaction k

𝒕𝒌 Refers to validate time for an interaction k

M Set of permissible parameter values for interaction 𝐼𝑝,𝑐
𝑘

V Set of non-permissible parameter values for 𝐼𝑝,𝑐
𝑘

I Refers to an interaction

In its general sense, an interaction takes place between simple or complex entities in a defined

environment such as a cloud system. Figure 1 shows simple and complex interactions between simple

and complex entities. We propose an interaction model for characterising a relationship between

objects. The interaction model describes how objects interact with one another; it characterises the

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 99

modes of interaction, the roles of interacting entities, the actions one can perform against others, and

the time of the interaction. To capture the essentials of an interaction, we define an object model of

interaction with four parameters or variables: mode (M), positional relationship (R), action (A), and

time (t). Each parameter may take on a range of values. The range is determined or constrained by

a) the interaction environment such as organisational policies; b) participating entities of the

interaction in terms of their nature, properties, capabilities, and constraints; c) roles of the

participating entities such as their relative positional relationship; and d) the time of the interaction.

These parameters will be defined later in this section.

Figure 1. Interaction Types

With these descriptions of the interaction object, we will be interested in the following operations:

• We want to initialise an interaction, allowing default values for all parameters without any

constraints.

• We want to know what actions are possible and what are not, due to the constrained nature of

the entities involved in the interaction.

• We want to know if the interaction is permissible under a set of governing system policies.

Specifically, we can define several base operations on an interaction between entities:

- Initialise (I): Initialise I with default parameters M, R, A and t

- Mode (𝐼𝐸𝑖𝐸𝑗

𝑘): Return all the possible modes between Ei and Ej for interaction k

- Relate (𝐼𝐸𝑖𝐸𝑗

𝑘): Return all possible positional relations between Ei and Ej for interaction k

- Action (𝐼𝐸𝑖𝐸𝑗

𝑘): Return all possible actions between Ei and Ej for interaction k

- State (𝐼𝐸𝑖𝐸𝑗

𝑘 , Sk): Return all allowed M, R, A and t once the constraints for participating

entities and security policies (Sk) have been applied to the interaction.

Additional operations involving entities, their constraints, and system policies relevant to security

violation and detection will be described in Security Policy-based Interaction Model below.

Interaction mode

Interaction mode (M) determines both the mode relationship (m) between objects, such as one to

one, one to many, etc., and the action direction (d) of the interaction from one object to another, such

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 100

as one way, both ways, etc. M consists of two parts: the first part refers to the mode relation (mi), and

the second refers to the action direction (dn). So, M is defined as a set of pairs consisting of mi and dn:

𝑀 = 𝑚𝑖 × 𝑑𝑛 where 𝑚𝑖 refers to a set of possible relations between entities. 𝑚𝑖 ∈ {𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5,

𝑚6}. The values of m signify the following: 𝑚1 ∶= 1: 1(𝑜𝑛𝑒: 𝑜𝑛𝑒); 𝑚2 ∶= 1: 𝑚 (𝑜𝑛𝑒: 𝑚𝑎𝑛𝑦),

𝑚3 ∶= 𝑚: 1(𝑚𝑎𝑛𝑦: 1), 𝑚4 ∶= 𝑚: 𝑚 (𝑚𝑎𝑛𝑦: 𝑚𝑎𝑛𝑦), 𝑚5 ∶= 1: 0 (𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑), 𝑚6 ∶= 0: 0 (𝑛𝑜 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛).

An interaction's action direction may take on one of three possible values, d1 d2, and d3. Specifically,

𝑑1 = 1 ∶=→ (𝑙𝑒𝑓𝑡 𝑡𝑜 𝑟𝑖𝑔ℎ𝑡), 𝑑2 = 2 ∶=← (𝑟𝑖𝑔ℎ𝑡 𝑡𝑜 𝑙𝑒𝑓𝑡), 𝑑3 = 3 ∶=↔ (𝑡𝑤𝑜 𝑤𝑎𝑦).

Interaction positional relationship

An object within a system or an organisation exists at a position either defined by its role within the

organisation or the layer or the domain within the system architecture. In an interaction, the role of

an entity and its standing relative to the role of the other entities is important, as this may dictate

whether the interaction is legitimate. For this reason, we consider a positional interaction

relationship (R) as the relative positional relationship between the entities of an interaction. The

positional relationship determines the validity of an interaction action through defined rules, roles,

layers, and policies associated with an entity’s interaction.

For example, a security policy may specify that only objects in the same domain or at the same level

may interact. Interaction level is entangled with the role-based level assigned to each domain in the

design. Each level entails classified security policies associated with object roles that determine a set

of authorised actions. As “roles” may be of a complex nature with inheritance and may change during

an entity's lifetime, we simply restrict and associate roles with three positional interaction

relationships in any interaction between objects to three different security isolation layers of the

security architecture: Cloud, Tenant, and Resource.

In this design, R denotes the positional interaction relationship according to entities' relation during

an active interaction. R ∈ {r1, r2, r3}, where r1 is mapped to down, representing the interaction

between objects from a high layer to a lower layer; r2 is mapped to up, representing interaction from

a lower layer to a higher layer; r3 is mapped to equal, representing the interaction between objects

in the same layer. Knowledge about positional relationships among objects helps to define the nature

of an interaction and the security policy decision.

Interaction time

Interaction time (t) refers to the valid time for an interaction to take place in the system. The

interaction time can be specified either by its start time and its end time (𝑡𝑠, 𝑡𝑒) or by start time and

duration (𝑡𝑠, 𝑡𝑑). There may be cases where the start time of an interaction is known but its end time

may be indeterminate depending on some environmental conditions. For such cases, 𝑡𝑑 is replaced

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 101

by the 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒 (𝛼) to indicate if the interaction is still ongoing (on) or has stopped (off).

Interaction time can thus be specified by 𝑡 = {(𝑡𝑠, 𝑡𝑒) 𝑜𝑟 (𝑡𝑠, 𝑡𝑑) 𝑜𝑟 (𝑡𝑠, 𝛼)}

Interaction action

An interaction is meaningful if it conveys a particular set of actions. A security breach occurs when

objects perform an action that violates their permissible interactions. An action is defined as a

possible set of actions over an interaction between system objects by virtue of their specific

relationship connected to the system. An action is a set of possible activities that an event may trigger;

however, the set of possible actions is often limited by the nature and constraints on object/entities

involved and security policy rules governing them and their interactions. Let A represent a set of

possible actions that are chosen based on the types of objects found in a cloud environment. For our

cloud security model, we studied cloud objects and established the set A of actions as follows: ‘read’,

‘write’, ‘modify’, ‘create’, ‘delete’, ‘execute’, ‘migrate’, ‘suspend’, ‘enable’, ‘disable’, ‘reset’, ‘lock’,

‘activation’, ‘unlock’, ‘clear’. Clearly, an object cannot perform all actions, as they are subject to system

policies and object constraints. Table 2 describes the meaning of actions in A.

Table 2. Action Description

Action Description

Read (Re) Permission to read the data on another Object

Write (W) Permission to write data onto another Object

Modify (Md) Permission to change (Write and Delete) existing data on another Object

Create (Cr) The right to create instances of another Object

Delete (D) The right to remove instances of another Object

Execute (Ex) The rights to run an instance of another Object

Migrate (Mi) The rights to re-map an instance of another Object

Suspend (Sp) The rights to pause an instance of another Object

Enable (En) The rights to run or power up another Object

Disable (Di) The rights to power down another Object

Reset (Rt) The rights to delete metadata and reboot instances of another Object

Lock (Lk) The rights to deny user access to another Object

Unlock (U) The rights to permit user access to another Object

Activate (Av) The rights to make another Object available to a User

Clear (Cl) The rights to remove user data from another Object

Security Policy-Based Interaction Model

This section describes our policy-based interaction model and how we use security policies at the

interaction level to detect and predict security breaches. In our design, security policies are mapped

to rules that determine the interaction parameters between entities. The proposed policy-based

interaction model constructs dynamic security boundaries formed by legitimate interaction

parameters according to security rules extracted from the governing security policies. Our model

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 102

focuses on security policies at the interaction level between entities through a set of interaction

parameters. The complex structure of cloud infrastructure and the shared and dynamic nature of

their resources demand robust security policy enforcement. This requires a clear definition of a

boundary between violated and non-violated policies. Applying security policies at the interaction

level allows a system to make visible previously undefined virtual boundaries between engaged

entities through their interaction parameters. In the following, we describe our policy-based

interaction model and its required components.

A policy can be defined as “an aggregation of policy rules”, where policy rules are used to construct

sets of conditions consistent with the set permissible actions (Stone, Lundy & Xie, 2001). Policy rules

are often derived from human language statements extracted from service level agreements (SLAs)

between users and service providers. NIST (2015) defines security policies as “Aggregate of

directives, regulations, rules, and practices that prescribe how an organisation manages, protects,

and distributes information”. In our design, security policies address rules and conditions that

establish valid interactions between entities in a cloud environment. In the SDS2 architecture, we

define a security policy (SP) as a directive that governs the interaction among simple/complex

entities through specific constraints applied to the entities, their location, and their interaction

parameters. Security constraints extracted from security policies determine the validity of a set of

actions taking place during an interaction. Figure 2 illustrates the relationship among these

components.

Figure 2. Security policy and its components

As discussed, system security policies, when applied to an interaction between the initiator (𝐸𝑖) and

the target entity (𝐸𝑗), determine sets of parameters (described in the cloud object model) that are

secure (valid or permissible) for the interaction. We define a Security Policy-Based Interaction

model, as shown in Figure 3. Security policies govern the validity of the parameters of the interaction.

Together with the system security policies (P), security constraints (C) on entities further limit the

interaction in time, isolation level, and location, as defined by legitimate interaction parameters. The

SDS2 architecture logically divides cloud infrastructure into three main security isolation levels (SILs)

or boundaries for the Cloud, Tenant, and Resource cloud domains. Recently, Yin et al. (2018)

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 103

introduced a security service framework with three security layers according to security domain

divisions; however, the system only focused on divisions related to tenant resources and VMs in

building isolation layers. We map security domains into security isolation levels that isolate each

domain's entities according to their security policy levels and the entities’ locations. Figure 4 shows

these isolation levels.

Figure 3. Security Policy-Based Interaction Model

Figure 4. Security Isolation levels

Security policy in our context covers 4 aspects: system interaction policy; time-based security policy;

dynamic location-based security policy; and entity-specific constraint policy. System interaction

security policies are organisational sets of security policies that dictate allowable object interactions,

as specified by valid parameters of an interaction. Time-based security policies dictate the valid time

or time duration of an interaction. These policies are often specified at runtime because they are

needed when dynamic operational circumstances demand. Location-based security policies are

required to deal with dynamic aspects of a cloud entity, such as changes in responsibility and

logical/physical zone placement over time. Entity-specific constraint policies deal with the specific

nature and properties of an entity. Some entities may not perform some activities because they do

not possess the capability, while others are capable but their actions are constrained by relevant

policies when they were instantiated. With these definitions, the set of security policies (Sk) relevant

to an interaction Ik between Ei and Ej may be expressed by the following equation:

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 104

𝑆𝑘 (𝐼𝑘 , (𝐸𝑖 , 𝐸𝑗)) = 𝑃𝐸𝑖𝐸𝑗
 (𝐿𝑘(𝐸𝑖, 𝐸𝑗), 𝑡𝑘)) = 𝑃𝐸𝑖𝐸𝑗

𝐿𝑘,𝑡𝑘

 𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 ∈ 𝑁 𝑎𝑛𝑑 𝑖 ≠ 𝑗.

The notations are defined in Table 3. P denotes the system policy governing the entities, location, and

time; L denotes location-based policies for each entity. If 𝐸𝑖 , 𝐸𝑗 are placed in the same zone and same

group zone policy, the location policies are the same for both. The security policy-based interaction

model concentrates on two main policy concepts: general policies and local policies. General policies

apply to all requests within the system, and local policies apply separately to each entity and their

interactions within the system according to their location and assigned constraints. Both sets of

policies are stored in separate security databases. Security policies are extracted during an

interaction, and rules and constraints are assigned and applied to the interaction over the valid

interaction time duration.

Interaction Security Violation Detection and Prediction Algorithm
(ISVDP)

With the introduction of the formal model of an interaction and its relationship with security policy,

we propose an interaction security violation detection and prediction (ISVDP) algorithm. The ISVDP

operates over the SDS2 cloud infrastructure with three levels of security isolation. The algorithm

automatically detects and predicts security breaches in relation to a requested interaction according

to valid/invalid interaction parameters. The main parameters of ISVDP include:

- Initiator entity: an entity that initiates a relationship with another entity and establishes an
interaction;

- Target entity (or Reactor): the entity of an interaction on which the initiator intends to
perform certain actions;

- Entity’s constraints: the constraints extracted from local policies related to both initiator’s
and target’s role, type, and their intrinsic properties;

- A complete set of system security policies defined over the SDS2 cloud and its isolation
levels: Cloud, Tenant, and Resources;

- A requested interaction between the initiator and the target entities (for violation detection).

In ISVDP, a constraint is represented as “a security statement which defines a set of conditions that

limits the scope and the property of an interaction between an initiator and its target entity”. High-

level security policies are written in human-language policies, which will be translated using a policy-

translator within the SDS2 controller. Armed with the translated security policies, a security

controller determines the validity of an interaction between entities based on their defined

interaction parameters. The detection and the prediction algorithms form two fundamental

components of the ISVDP model. Both of them share and are built upon the initial three processing

stages, as shown in Figure 5 for a specific interaction k. We define the required notations in Table 3.

We define the basic set of operations on an interaction object with these notations in Table 4.

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 105

Table 3. Required Notations

Notation Meaning Detailed expression

𝒄𝒋𝒗 Set of constraints associated with entity j

E An entity composed of role and object i E= 𝐸𝑖
𝑗𝑘

I An interaction object

𝑰𝒊𝒏𝒊𝒕
𝒌

Interaction object k initialised with default
parameters (unconstrained)

𝐼𝑖𝑛𝑖𝑡
𝑘 (∗,∗)

𝑰𝑪
𝒌

Interaction object k with object constraints
applied

𝐼𝐶
𝑘(𝐸𝑖 , 𝐸𝑗) 𝑜𝑟 𝐼𝐶

𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣))

𝑰𝑷
𝒌 Interaction object k with system policies applied 𝐼𝑃

𝑘(𝐸𝑖 , 𝐸𝑗 , 𝑆)

𝑰𝑷,𝑪
𝒌

Interaction object k with both system policies
and object constraints applied

𝐼𝑃,𝐶
𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣), 𝑆)

𝑰𝒓𝒆𝒒
𝒌

Interaction object k with parameters derived
from an interaction request

𝐼𝑟𝑒𝑞
𝑘 (𝐸𝑖 , 𝐸𝑗)

Sk
Interaction k policies derived from the system
policies

𝑆𝑘 = 𝑃𝐸𝑖𝐸𝑗

𝐿𝑘,𝑡𝑘

Table 4. Operations Defined on an Interaction Object

Operation Meaning Detailed expression

Initialise (I) Initialise I with default parameters M, R, A and t

Mode (Ik)
Return possible modes between Ei and Ej for
interaction k

𝑀𝑜𝑑𝑒 𝑜𝑓 (𝐼𝐶
𝑘 𝑜𝑟 𝐼𝑃

𝑘𝑜𝑟 𝐼𝑃,𝐶
𝑘)

Relate (Ik)
Return possible positional relations between Ei
and Ej for interaction k

𝑅𝑒𝑙𝑎𝑡𝑒 𝑜𝑓 (𝐼𝐶
𝑘 𝑜𝑟 𝐼𝑃

𝑘𝑜𝑟 𝐼𝑃,𝐶
𝑘)

Action (Ik)
Return possible actions between Ei and Ej for
interaction k

𝐴𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 (𝐼𝐶
𝑘 𝑜𝑟 𝐼𝑃

𝑘𝑜𝑟 𝐼𝑃,𝐶
𝑘)

Const (Ik)
Return possible interaction parameters after
applying constraints on interaction k

Const on (𝐼𝑖𝑛𝑖𝑡
𝑘)

State (Ik)
Return all states of interaction k between Ei and
Ej

𝑆𝑡𝑎𝑡𝑒 𝑜𝑓 (𝐼𝐶
𝑘 𝑜𝑟 𝐼𝑃

𝑘𝑜𝑟 𝐼𝑃,𝐶
𝑘)

State (Ik, req)
Return all states of the interaction, as required
by the request

𝑆𝑡𝑎𝑡𝑒 𝑜𝑓 (𝐼𝑟𝑒𝑞
𝑘)

Policy (L, Ei)
Returns the set of system policies applied to
entity i location

Policy (Ik, req)
Return the set of system policies applied to
interaction k

Policy on (Ik or 𝐼𝑟𝑒𝑞
𝑘)

Compare (Im, In)
Compare the states of interaction m and
interaction n, return differences in M, R, A, and t

Opposite (Ik)
Returns set of possible violated mode parameters

extracted from valid interactions

Figure 5. ISVDP stages

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 106

Stage 1: Initialising the interaction. At this initial stage, the objects involved in the interaction are

made available with their security-rated properties. The interaction template is initialised with no

constraints on interaction parameters. The requested interaction is also made available. The result of

this stage is the object 𝐼𝑖𝑛𝑖𝑡
𝑘 (∗,∗). The algorithm intelligently identifies all involved entities and

components in this stage. Additionally, the algorithm detects the interaction type and parameters.

Dynamically it can change interaction parameters according to the location and nature of entities and

create initial interaction parameters between two entities.

Stage 2: Application of entity constraints over the interaction k. At this stage, the interaction

parameters are modified according to the properties and constraints of the entities involved. The

result of this stage is the object 𝐼𝑐
𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣)).

Stage 3: Application of the policy over the interaction k. At this stage, the parameters of interaction

k will be modified by the constraints derived from the system policies that apply to interaction k. The

result of this stage is the object 𝐼𝑝,𝑐
𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣), 𝑃). The policy-driven interaction algorithm

encompassing stages 1, 2, and 3 is shown in Algorithm 1.

Algorithm 1. Policy-driven interaction (PdI ())

Input: Ei, Ej, SDS2 cloud objects’ DB, System Policy statement (P)

Output: 𝐼𝑝,𝑐
𝑘 (M', R', A', t')

1: while request is valid do

 2: for Ei, Ej do

 3: Intialize (Ik) //get interaction parameters for 𝐸𝑖 , 𝐸𝑗 without applying constraints and set 𝐼𝑖𝑛𝑖𝑡
𝑘

 4: if 𝐼𝑖𝑛𝑖𝑡
𝑘 ≠ Null

 Const (𝐼𝑖𝑛𝑖𝑡
𝑘) //get interaction parameters by applying constraints on 𝐼𝑖𝑛𝑖𝑡

𝑘 and set 𝐼𝐶
𝑘

 5: 𝐼𝐶
𝑘 = State (𝐼𝐶

𝑘) // return parameters after applying constrains

 6: Policy (Ik) // get system policies (P) applied to the Ik

 7: 𝐼𝑝,𝑐
𝑘 = State (Ik) // return parameters after applying policy system

 8: end if;

 9: end for;

10: end while;

Interaction Security Violation Detection

Consider an interaction within a cloud system. The detection algorithm determines if the interaction

is safe or violates the system's security policy or, specifically, if a security breach has occurred. With

the global knowledge of the cloud environment and the interactions among entities, the security

controller intelligently schedules the execution of the Interaction Security Violation Detection (ISVD)

algorithm on suspicious circumstances, on a specific request or triggered events, or on a regular basis.

The algorithm considers each interaction parameter under consideration to discover if any

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 107

inconsistency has occurred relative to the security policies, and hence the interaction parameters

dynamically applicable to the interaction. The module goes through the three fundamental stages as

described above and proceeds to stages 4d, 5d, 6d and 7d for violation detection as follows.

Stage 4d: The requested interaction policy level is analysed according to defined security isolation

levels explained for the security policy-based interaction model (Domain (𝐼𝑟𝑒𝑞
𝑘)).

Stage 5d: The interaction under consideration between the specified objects is analysed, resulting in

a set of interaction statuses required by the request: 𝐼𝑟𝑒𝑞
𝑘 (𝐸𝑖, 𝐸𝑗).

Stage 6d: The algorithm intelligently detects each object interaction parameter rule based on security

domain and location Domain, (𝐼𝑟𝑒𝑞
𝑘 (𝐸𝑖 , 𝐸𝑗)) and Loc (𝐸𝑖 , 𝐸𝑗).

Stage 7d: By analysing 𝐼𝑝,𝑐
𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣), 𝑃), and 𝐼𝑟𝑒𝑞

𝑘 (𝐸𝑖, 𝐸𝑗) 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, the

algorithm determines if requested actions are within the set of actions allowable by the policies and

constraints imposed on the entities of the interaction.

The algorithm returns the validation status of the interaction: either Safe or Violate. “Safe” means

that the requested interaction does not violate any policy related to any interaction parameter and is

not a security breach. “Violate” means that the requested interaction violates one of the parameters

(M, R, A, t) or location of the allowed security policy that governs the interaction. The algorithm

returns whenever a violation of an interaction parameter is detected. However, in cases where policies

governing the interaction parameter are undefined (either due to an oversight or situations not yet

encountered), it will decide if there is a possibility to partially accept the interaction and initiate an

alert for the decisionmaker to create a new policy to cover the newly discovered situation.

Figure 6 shows the decision process of the ISVD algorithm which determines interaction states using

the ISVD algorithm. We use (𝑀′, 𝑅′, 𝐴′, 𝑡′) to denote State (𝐼𝑝,𝑐
𝑘) and (𝑀′′, 𝑅′′, 𝐴′′, 𝑡′′

) to denote State

(𝐼𝑟𝑒𝑞
𝑘). In the detection process, all system policies, including location, and entity constraints are

applied to the interaction k to obtain all the allowable parameters of the interaction. Figure 6 shows

the detection approach in determining the validation status of the requested interaction k. The

detection algorithm will stop the process on discovering the first interaction parameter violation and

activate a security alarm within the security controller. Algorithm 2 describes the ISVD detection

algorithm, which analyses the 𝐼𝑟𝑒𝑞
𝑘 , extracting number and types of involved entities during the

requested interaction. Figure 6 demonstrates the state that an interaction will be considered to be in

after using the ISVD algorithm. The results are based on two main conditions defined as equal (=)

(where each specific interaction parameter of 𝐼𝑝,𝑐
𝑘 is equal to its 𝐼𝑟𝑒𝑞

𝑘 interaction parameter) and not

equal (!) (where interaction parameters of 𝐼𝑝,𝑐
𝑘 are not the same as 𝐼𝑟𝑒𝑞

𝑘).

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 108

Figure 6. ISVD algorithm

Algorithm 2. Interaction Security Violation Detection (ISVD ())

Input: 𝐼𝑟𝑒𝑞
𝑘 (requested interaction), 𝐼𝑝,𝑐

𝑘 ,

Output: Safe | Violate

1: for received 𝐼𝑟𝑒𝑞
𝑘 do

 2: if Domain (𝐼𝑟𝑒𝑞
𝑘)==True then

 3: Policy (L, E) //Returns set of system policies on the current location of entities during the initiation of 𝐼𝑟𝑒𝑞
𝑘 and set L

 4: If L == True (location is verified) then

 5: PdI () //call the algorithm 1 to get 𝐼𝑝,𝑐
𝑘

 𝐼𝑃,𝐶
𝑘 = State (𝐼𝑃,𝐶

𝑘)

 6: 𝐼𝑟𝑒𝑞
𝑘 = State (Ik, req) // get requested interaction parameters

 7: for 𝐼𝑟𝑒𝑞
𝑘 and 𝐼𝑃,𝐶

𝑘 do

 8: diff := Compare (𝐼𝑃,𝐶
𝑘 , 𝐼𝑟𝑒𝑞

𝑘) // returns difference (diff) parameters between 𝐼𝑃,𝐶
𝑘 𝑎𝑛𝑑 𝐼𝑟𝑒𝑞

𝑘

 9: P := Policy (Ik, req) // returns system policies applied to interaction parameters

 10: if diff satisfies P then

 11: state (𝐼𝑟𝑒𝑞
𝑘) is safe

 12: else state (𝐼𝑟𝑒𝑞
𝑘) is Violate //rise security violation alarm to security controller, isolate the interaction

 13: end if;

 14: end for;

 15: end if;

 16: end if

17: end for;

Interaction Security Violation Prediction

In this section, we describe the prediction algorithm and its functionality. The Interaction Security

Violation Prediction (ISVP) algorithm enables interaction violation predictability based on

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 109

permissible values of the parameters of the interaction. The algorithm is different from the detection

algorithm in that it determines all “Safe” interactions and all potential “Violate” interactions under

the system security policies and constraints imposed on the interaction parameters between given

entities. The prediction algorithm automatically discovers the probability of a possible future

violation according to the current state of validation interaction parameters. For each interaction

parameter, it discovers upcoming violation values. It analyses the state of entities’ interaction and

predicts future violations according to unacceptable interaction parameters within the system. The

prediction algorithm considers each interaction parameter and determines the invalid parameter

values through prediction approaches. The prediction algorithm proceeds through the three stages of

Algorithm 1 and proceeds through stages 4p and 5p, as shown in Algorithm 3.

Stage 4p: The stage outputs all possible “Safe” interaction parameters between the given entities

considering all constraints and security policies.

Stage 5p: The outputs are all potential “Violate” interactions between the given entities.

This is done by inspecting each parameter (M, R, A, t) and applying security constraints on each

parameter. If Ms (safe parameters defined for M during k interaction) is the allowed set of safe modes,

then Mv = M – Ms is the set of violate modes (M is all possible values). Similarly, Rs and Rv are the set

of allowed relational positions and violate relational positions, respectively; As and Av are the set of

allowed actions and violate actions, respectively. Similar notations are used for time and the location.

The results allow the system to predict possible security breaches if interaction parameter conditions

are not met. These conditions display the predicted violations in terms of interaction parameters.

Ideally, all possible violations relative to the current interaction can be discovered/predicted;

however, if all the interaction parameters are allowed to vary independently of one another, the

analysis can be computationally expensive and not practicable. Realistically, we may want to address

and predict most likely violations. We thus restrict ourselves to simple situations where one

parameter varies at a time, just to illustrate the prediction process. In the predicting state, the system

anticipates all possible different situations that current interaction parameters between defined

entities can face. For instance, if the valid actions between two objects are defined as “read”, all other

possible actions can be considered violations of interaction parameters considering the object nature

and constraints. So, the system can stop the violation using its stored predicted violation parameters

rather than going through lower layers and nested policy discovery. In the presented prediction

algorithm, all opposite interaction parameters against validation parameters are considered potential

interaction parameter violations. The security controller runs the ISVDP algorithm to discover the

probability of future attacks according to each interaction parameter for an interaction, say k. It is an

intelligent mechanism that focuses on interaction parameters and their possible forthcoming

violation during an interaction.

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 110

Algorithm 3 Interaction Security Violation Prediction (ISVP ())

Input: 𝐼𝑝,𝑐
𝑘

Output: V set of possible potential violate interaction parameters

1: PdI () // set 𝐼𝑝,𝑐
𝑘

2: for 𝐼𝑝,𝑐
𝑘 do

 3: while 𝑇𝑀 = Mode (𝐼𝑝,𝑐
𝑘) do // get all possible sets of M extracted from 𝐼𝑝,𝑐

𝑘 from safe mode

 𝑉𝑀= opposite (𝑇𝑀) // set of possible violated mode parameters extracted from valid (𝑇𝑀)

 4: end while;

 5: while 𝑇𝑀 = Relate (𝐼𝑝,𝑐
𝑘) do // get all possible sets of R extracted from 𝐼𝑝,𝑐

𝑘 from safe mode

 𝑉𝑅 = opposite (𝑇𝑅)// sets of possible violated R from 𝐼𝑝,𝑐
𝑘 from safe mode

 6: end while;

 7: while 𝑇𝐴 = Action (𝐼𝑝,𝑐
𝑘) do // get all possible sets of A extracted from 𝐼𝑝,𝑐

𝑘 from safe mode

 𝑉𝐴 = opposite (𝑇𝑣) // sets of possible violated A from 𝐼𝑝,𝑐
𝑘 from safe mode

 8: end while;

9: V = (𝑉𝑀, 𝑉𝑅, 𝑉𝐴) // set of predicted and possible violation interaction parameters according 𝐼𝑝,𝑐
𝑘

10: end for;

Interaction Scenarios and Results

In this section, we demonstrate our policy-driven security scheme by using a security controller in

verifying allowable interactions and detecting policy violations between entities in a cloud

infrastructure based on our proposed model of interaction. We built the security controller from

scratch in Java language and run our ISVDP algorithm in an Ubuntu machine with 16 GB RAM,

Intel® Core (TM) i7-7600U CPU. We set different scenarios according to various interaction types,

and analyse the results to evaluate the proposed interaction model and its components for each case.

We simulate the interaction between different types of objects within the system to detect and predict

security violations according to our ISVDP model. We consider the CloudSimSDN-NFV framework

(Son, He & Buyya, 2019) to simulate the cloud infrastructure and build our security controller and its

ISVDP algorithm. Figure 7 demonstrates the implementation process.

Scenario 1: User interaction. In this scenario, the security controller (SC) receives interactions

triggered by a user. The SC identifies the user and interprets the request for an interaction. According

to the user level and rights, the security controller determines the security policies related to the user

and involved objects. The requested interaction is sent to the interaction security domain controller

to extract security policies and interaction parameters. The security controller then initiates a virtual

security function (VSF) designed to monitor the interaction based on the received validated

interaction, entities' policies, and constraints. The analyser function is responsible for running the

ISVDP algorithm to detect and predict security violations.

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 111

Scenario 2: Specific requested interaction. In this scenario, a specific interaction runs within the

system. The specific interaction is considered as a request to monitor a specific interaction being

performed by the security controller. This scenario occurs when the security controller decides to

monitor an interaction between specific entities within the system. The security controller triggers an

interaction to be monitored among specific entities. It will happen mainly in two sub-scenarios:

1) randomly monitor an entity based on its statistics received from its virtual security functions;

2) activate a scheduled monitoring of a sensitive entity within the system in specific time slots.

Scenario 3: Triggered interaction. The security controller activates a virtual security function to

monitor a triggered interaction. This scenario occurs when an abnormal interaction is triggered

between entities within the system. The security controller initiates and commands reports from

relevant virtual security functions over suspicious entities and then executes the ISVDP algorithm to

assess the situation.

Figure 7. Implementation process

The functions within the security controller perform the ISVDP algorithms and produce the results.

As demonstrated in Figure 8, the security controller analyses the requested interaction and involved

objects. Security policies and objects’ constraints are extracted according to object security isolation

layers and entities' location. In this paper, however, we mainly concentrate on the interaction

between simple objects and their interactions. Figure 5 shows the flow process of our ISVDP

algorithms. In the first step, the security controller creates entities within the cloud system by

substantiating the identified objects together with their defined role. In Figure 8 below, the security

controller, after receiving the interaction, triggers and assigns a specific VSF to monitor each

interaction. It extracts required policies for each interaction and assigns a unique policy ID (P.Id). It

labels each interaction based on specific interaction ID (Int.Id) and extract validate time (V. Time)

for each interaction as well. Each VSF lifecycle starts according to triggered requested interaction.

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 112

Figure 8. Extracting involved objects and assigning a monitoring security function to each interaction

We consider cloud objects of different types and determine possible allowable interactions. For each

scenario, objects can be at the same or different access levels. System policies are applied to achieve

validate interaction parameters once an interaction is triggered. For simplicity, interaction time is

assumed valid throughout the whole time under consideration. We detail below an interactive case

study between two entities to describe the process of discovering and validating the interaction

between the two entities. In the following case, we describe how a policy-based interaction analyser

will extract required interaction parameters to be sent to the assigned security function.

VM-Storage interaction: interaction between a virtual machine and a storage entity. In the first

step, the program at the controller level creates participating entities (if they have not existed yet)

based on the information stored in the security database, SecDB. Then, the security controller

analyzes the interaction and extracts policies applied to the requested interaction between the two

entities according to each entity and their level within the cloud infrastructure.

As depicted in Table 5, the second and third columns show values of the VM and the storage entities'

interaction parameters after their constraints have been applied. The fourth column shows the

interpretation of the system policy on the objects’ interaction parameters. The last column shows all

possible interactions between the two entities as determined by the allowable interaction parameters

after all constraints and system policies are considered. The results indicate that the only allowable

actions are Re, W in an allowable pair of (m1, d2) mode of interaction between the VM and the cloud

system's storage entities. In our program, we consider t as an acceptable duration time over which an

interaction can take place. For violation detection, the security controller calls Algorithm 2. It

analyses the incoming request and extracts the required parameters and call 𝑆𝑡𝑎𝑡𝑒 (𝐼𝑟𝑒𝑞
𝑘). During this

phase, the requested interaction statement requests the removal of a file from the storage object

requested by the virtual machine at the same level.

Table 5. Collected data from the controller for VM-Storage interaction

 I (VM) I(Storage) SysPolicy 𝑰𝒑,𝒄
𝒌

M (m/d) (m1, d1) (m1, d1) (m1, d2) (m1, d2)

r Cloud Cloud cloud cloud

A Re, W, D Re, W Re, W, Cr, D Re, W

t 600 ms 600 ms 300 ms 300 ms

The program translates the incoming request, which detects the delete violation as a delete action

against 𝐼𝑝,𝑐
𝑘 . It raises a security alarm, indicating a violation by the requested interaction. For violation

prediction against possible attacks, the system will call Algorithm 3 to predict possible violations

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 113

against the parameters of 𝐼𝑝,𝑐
𝑘 . The system calculates possible violation parameters relative to

allowable 𝐼𝑝,𝑐
𝑘 parameters. In this case, interaction actions except for Re, W are considered as action

violations. More importantly, this algorithm can enumerate all possible interaction violations

between two entities (those not allowable by 𝐼𝑝,𝑐
𝑘) by systematically going through the mode, the

positional relationship, the action, and the interaction's time parameters. As an example, if we keep

all parameters except the mode parameters fixed, we can declare that other modes except m1 and d3

are potential (or predicted) violations. Similarly, the system considers any positional relation except

cloud as a security breach and stores the data. An insider/outsider request that involves any of the

predicted violation parameters will be investigated in anticipation of potential security breaches:

ISVP (𝐼𝑝,𝑐
𝑘)→V (𝑉𝑀, 𝑉𝑅, 𝑉𝐴, 𝑉𝑡).

We executed various tests according to various scenarios to show expected results. Table 6 reveals

some result samples that the security controller captured by performing many cases. The results are

simulation results we captured by running various simulated cases to test our security algorithm.

Table 6 demonstrates extracted parameters for each scenario through running our security

algorithm.

In the table Int reveals validated parameters expected after running the PdI () algorithm. After

running the ISVD () algorithm, it shows the results using Act parameter (s: safe, v: violate). We

monitored our security controller performance according to the number of interactions triggered

within the system from any resources, the detection processing time, and the time until the system

detects the status of the requested interaction. As explained before, each requested interaction

monitors by a specific VSF with unique identity (VSF Id) to be distinguished by the security

controller. Figure 9 illustrates the SDS2 performance using detection processing time in the face of

different interactions. In the figure, the average processing time increased as the number of

interactions received by the security controller increased.

Table 6. Expected results of the simulated scenarios

VSF ID Src. Res. Int. Init
Int.

Act. P. Id exec
M R A t

VSF 6 VM Storage SC (m1, d3) Cloud Re, W 3000 ms s 3 Y

VSF 3 User Storage SC (m4, d3) Tenant Re, W 900 ms v 3 N

VSF 2 Storage APP UR (m1, d1) Cloud Md 10500 ms v 22 Y

VSF 9 User App AT (m4, d2) Resource Md 1000 ms v 23 Y

VSF 7 VM Storage SC (m2, d2) Tenant Re, W 800 ms s 30 Y

VSF 11 App Storage SC (m5, d2) Resource Re, W 600 ms v 13 N

VSF 8 Net VM UR (m4, d1) Tenant Ex, Re 600 ms s 19 N

VSF 22 Storage VM AT (m1, d2) Cloud Re 300 ms v 22 N

http://doi.org/10.18080/jtde.v9n2.364

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 114

Figure 9. Performance monitoring according to interaction detection processing time

In this scenario, the security controller only considers simple interactions between two entities, while

each interaction is initiated with pre-defined conditions, to test the SDS2 security controller

performance according to simple interaction types with pre-defined security policies.

Conclusion

This paper has taken a novel approach with the proposed Policy-based Interaction Model, to provide

isolation within the cloud infrastructure. The proposed model introduced a dynamic construction of

security boundaries based on our constructed interaction model and its parameters. To secure cloud

resources, an intelligent security algorithm has been developed to provide proactive detection and

prediction in relation to the interaction parameters. Security policy rules pertaining to entities and

their location are further applied to the interaction parameters to determine the overall validity of

the participating entities' interaction.

The policy-driven interaction model is, to the best of our knowledge, the first in a new direction for

combatting security incidents systematically. A possible next step is to deploy the proposed SDS2 in

a real cloud scenario to detect and predict cloud security violations using new technologies, Software-

defined Networking and Network Function Virtualisation.

References

Barjatiya, S., & Saripalli, P. (2012). Blueshield: A layer 2 appliance for enhanced isolation and security

hardening among multi-tenant cloud workloads. Paper presented at the Proceedings of the

2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing.

Basile, C., Valenza, F., Lioy, A., Lopez, D. R., & Perales, A. P. (2019). Adding Support for Automatic

Enforcement of Security Policies in NFV Networks. IEEE/ACM Transactions on Networking,

27(2), 707-720. http://doi.org/10.1109/TNET.2019.2895278

Cai, F., Zhu, N., He, J., Mu, P., Li, W., & Yu, Y. (2018). Survey of access control models and

technologies for cloud computing. Cluster Computing, 22, 6111–6122. https://doi.org

/10.1007/s10586-018-1850-7

0

20

40

60

80

100

120

10 20 30 40 50 60

A
ve

ra
ge

 p
ro

ce
ss

in
g

ti
m

e(
m

s)

Number of interactions

Detection processing
time

http://doi.org/10.18080/jtde.v9n2.364
http://doi.org/10.1109/TNET.2019.2895278

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 115

Chen, C., Li, D., Li, J., & Zhu, K. (2016). SVDC: A Highly Scalable Isolation Architecture for

Virtualized Layer-2 Data Center Networks. IEEE Transactions on Cloud Computing, 6(4),

1178-1190. http://doi.org/10.1109/TCC.2016.2586047

Damiani, M. L., Bertino, E., Catania, B., & Perlasca, P. (2007). GEO-RBAC: a spatially aware RBAC.

ACM Transactions on Information and System Security (TISSEC), 10(1), 2.

Del Piccolo, V., Amamou, A., Haddadou, K., & Pujolle, G. (2016). A survey of network isolation

solutions for multi-tenant data centers. IEEE Communications Surveys & Tutorials, 18(4),

2787-2821. https://doi.org/10.1109/COMST.2016.2556979

Factor, M., Hadas, D., Harnama, A., Har'El, N., Kolodner, H., Kurmus, A., Shulman-Peleg, A., &

Sorniotti, A. (2013). Secure logical isolation for multi-tenancy in cloud storage. Paper

presented at the 2013 IEEE 29th Symposium on Mass Storage Systems and Technologies

(MSST). https://doi.org/10.1109/MSST.2013.6558424

Farahmandian, S., & Hoang, D. B. (2017). SDS 2: A novel software-defined security service for

protecting cloud computing infrastructure. Paper presented at the 2017 IEEE 16th

International Symposium on Network Computing and Applications (NCA). https://doi.org

/10.1109/NCA.2017.8171388

Hoang, D. B., & Farahmandian, S. (2017). Security of Software-Defined Infrastructures with SDN,

NFV, and Cloud Computing Technologies. In Guide to Security in SDN and NFV (pp. 3-32):

Springer.

Jararweh, Y., Al-Ayyoub, M., Darabseh, A., Benkhelifa, E., Vouk, M., & Rindos, A. (2016). Software

defined cloud: Survey, system and evaluation. Future Generation Computer Systems, 58, 56-

74. https://doi.org/10.1016/j.future.2015.10.015

Karmakar, K. K., Varadharajan, V., Tupakula, U., & Hitchens, M. (2016). Policy based security

architecture for software defined networks. Paper presented at the Proceedings of the 31st

Annual ACM Symposium on Applied Computing. https://doi.org/10.1145/2851613.2851728

Kosiur, D. (2001). Understanding policy-based networking (Vol. 20): John Wiley & Sons.

Li, F., Li, Z., Han, W., Wu, T., Chen, L., Guo, Y., & Chen, J. (2018). Cyberspace-Oriented Access

Control: A Cyberspace Characteristics-Based Model and its Policies. IEEE Internet of Things

Journal, 6(2), 1471-1483. https://10.1109/JIOT.2018.2839065

Mavridis, I., & Karatza, H. (2019). Combining containers and virtual machines to enhance isolation

and extend functionality on cloud computing. Future Generation Computer Systems, 94,

674-696. https://doi.org/10.1016/j.future.2018.12.035

Mundada, Y., Ramachandran, A., & Feamster, N. (2011). SilverLine: Data and Network Isolation for

Cloud Services, HotCloud 2011, Portland, OR, USA. Available at https://static.usenix.org

/event/hotcloud11/tech/final_files/Mundada6-1-11.pdf

NIST [National Institute of Standards and Technology]. (2015). Information security policy.

Committee on National Security Systems Instruction, CNSSI 4009, Glossary. Revised April 6,

2015. US Department of Commerce.

Pfeiffer, M., Rossberg, M., Buttgereit, S., & Schaefer, G. (2019). Strong Tenant Separation in Cloud

Computing Platforms. Paper presented at the Proceedings of the 14th International

Conference on Availability, Reliability and Security. https://doi.org/10.1145

/3339252.3339262

http://doi.org/10.18080/jtde.v9n2.364
http://doi.org/10.1109/TCC.2016.2586047
https://doi.org/10.1109/COMST.2016.2556979
https://doi.org/10.1109/MSST.2013.6558424
https://doi.org/10.1109/NCA.2017.8171388
https://doi.org/10.1109/NCA.2017.8171388
https://doi.org/10.1109/NCA.2017.8171388
https://doi.org/10.1016/j.future.2015.10.015
https://doi.org/10.1145/2851613.2851728
https://10.0.4.85/JIOT.2018.2839065
https://doi.org/10.1016/j.future.2018.12.035
https://static.usenix.org/event/hotcloud11/tech/final_files/Mundada6-1-11.pdf
https://static.usenix.org/event/hotcloud11/tech/final_files/Mundada6-1-11.pdf
https://static.usenix.org/event/hotcloud11/tech/final_files/Mundada6-1-11.pdf
https://doi.org/10.1145/3339252.3339262
https://doi.org/10.1145/3339252.3339262
https://doi.org/10.1145/3339252.3339262

Journal of Telecommunications and the Digital Economy

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 2 June 2021
Copyright © 2021 http://doi.org/10.18080/jtde.v9n2.364 116

Rajkumar, P.V., & Sandhu, R. (2016). POSTER: security enhanced administrative role based access

control models. Paper presented at the Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security. https://doi.org/10.1145/2976749.2989068

Son, J., He, T., & Buyya, R. (2019). CloudSimSDN‐NFV: Modeling and simulation of network

function virtualization and service function chaining in edge computing environments.

Software: Practice and Experience. https://doi.org/10.1002/spe.2755

Stone, G. N., Lundy, B., & Xie, G. G. (2001). Network policy languages: a survey and a new approach.

IEEE network, 15(1), 10-21. https://doi.org/10.1109/65.898818

Tarkhanov, I. (2016). Extension of access control policy in secure role-based workflow model. Paper

presented at the 2016 IEEE 10th International Conference on Application of Information and

Communication Technologies (AICT). https://doi.org/10.1109/ICAICT.2016.7991691

Varadharajan, V., Karmakar, K., Tupakula, U., & Hitchens, M. (2018). A policy-based security

architecture for software-defined networks. IEEE Transactions on Information Forensics

and Security, 14(4), 897-912. https://doi.org/10.1109/TIFS.2018.2868220

Wang, X., Shi, W., Xiang, Y., & Li, J. (2015). Efficient network security policy enforcement with policy

space analysis. IEEE/ACM Transactions on Networking, 24(5), 2926-2938. https://doi.org

/10.1109/TNET.2015.2502402

Yin, X., Chen, X., Chen, L., Shao, G., Li, H., & Tao, S. (2018). Research of Security as a Service for

VMs in IaaS Platform. IEEE Access, 6, 29158-29172. https://doi.org/10.1109

/ACCESS.2018.2837039

http://doi.org/10.18080/jtde.v9n2.364
https://doi.org/10.1145/2976749.2989068
https://doi.org/10.1002/spe.2755
https://doi.org/10.1109/65.898818
https://doi.org/10.1109/ICAICT.2016.7991691
https://doi.org/10.1109/TIFS.2018.2868220
https://doi.org/10.1109/TNET.2015.2502402
https://doi.org/10.1109/TNET.2015.2502402
https://doi.org/10.1109/TNET.2015.2502402
https://doi.org/10.1109/ACCESS.2018.2837039
https://doi.org/10.1109/ACCESS.2018.2837039
https://doi.org/10.1109/ACCESS.2018.2837039

