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Abstract: The Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing 

(MIMO-OFDM) scheme represents the dominant radio interface for broadband multicarrier 

communication systems. However, with insufficient Cyclic Prefixes (CP), Inter-Symbol 

Interference (ISI) and Inter-Carrier Interference (ICI) occur due to the time-varying multipath 

channel. This means that the performance of the system will be degraded. In this paper, we 

investigate the interference problem for a MIMO Discrete Wavelet Transform (MIMO-DWT) 

system under the effect of the downlink LTE channel. A Low-Density Parity-Check (LDPC) 

decoder is used to estimate the decoded signal. The proposed iterative algorithm uses the 

estimated decoded signal to compute the components required for ICI/ISI interference 

reduction. In this paper, Iterative Interference Cancellation (IIC) is employed to mitigate the 

effects of interference that contaminates the received signal due to multiple antenna 

transmission and a multipath channel. An equalizer with minimum mean square error is 

considered. We compare the performance of our proposed algorithm with the traditional 

MIMO-OFDM scheme in terms of bit error probability under insufficient CP. Simulation results 

verify that significant improvements are achieved by using IIC and MIMO-IIC for both systems. 
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Introduction  

Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-

OFDM) scheme is used to increase coupling capacity and spectrum efficiency in a radio 

multicarrier communication system. That is to say, it improves the overall system performance 

by providing huge throughput and coverage probability of all users simultaneously. However, 

to address the issue of block fading multipath channel under insufficient cyclic prefix (CP) and 

guard interval, effective receiver design is important. 

To increase the spectral and power efficiency, the Discrete Wavelet Transform (DWT) with a 

Multi-Carrier Modulation scheme (MCM) has been designed and represented in different 

scenarios (Zhang & Cheng, 2004; Galli & Logvinov, 2008; Harbi & Burr, 2014; Chafii, Harbi 

& Burr, 2016; Chafii et al, 2018). In Chafii, Harbi & Burr (2016), the effect of varying the 

number of selected levels of the decomposition and reconstruction algorithms has been 

introduced. The main advantages of DWT-MCM over OFDM is the best time-frequency 

localization of its waveforms due to the choice of the mother wavelet and scaling functions 

(Oltean & Isar, 2009). 

DWT-MCM also proved to be more robust with respect to the temporal variation (or 

changeability) of the wireless channel (Oltean, 2007). Better use of the channel in various 

interference environments was gained by using modulation techniques based on multirate 

wavelets, due to their dimensionality in time and frequency (Lindsey & Dill,1995). 

Multichannel filter banks and wavelet transforms in encryption and channel modulation have 

been investigated and studied using various schemes, such as CDMA signature spread, fractal 

modulation and superimposed multi-tone modulation (Wornell, 1996). The inherent 

versatility of wavelet transforms, with a number of interesting additional advantages, makes 

it a good candidate for multi-carrier schemes (Jamin & Mähönen, 2005). The method of 

wavelet packets has been widely adopted in mobile networks as a multi-carrier multiple access 

technique and in cognitive radio applications (Mathew, Premkumar & Lau, 2010a). The 

ingrained orthogonality of multi-wavelets made it suitable for the single and multi-carrier 

schemes and for reducing the Multiple Access Interference (MAI) in a multi-user CR network 

(Mathew, Premkumar & Lau, 2010b). Recently, an iterative algorithm for interference 

reduction is shown in different systems, such as SISI-FBMC, SISO-OFDM, and MIMO-OFDM 

transceivers under insufficient guard interval and different channel conditions (Harbi & Burr, 

2016a, 2016b, 2018; Mahama et al., 2019a, 2019b, 2020; Harbi, 2017). 

In this paper, we propose an iterative algorithm scheme which reduces the interference among 

users for MIMO-DWT/OFDM systems to eliminate ISI/ICI interference due to fast fading 

multipath channel. The desired components can be calculated from the estimated decoded 
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signals. At a given received antenna, the proposed scheme uses these components to decrease 

the ICI/ISI from multiple antenna transmission. 

The remainder of this paper is organized as follows. In the next section, we describe the DWT-

based MCM formulation and summarize the reconstruction and decomposition algorithms. 

Following that, we define the system model of the proposed algorithm for interference 

management, and introduce the main assumptions required for our analysis. Then, we discuss 

our simulation results. Finally, we summarize our contributions as a conclusion to the paper. 

Discrete Wavelet Transform-Multi Carrier Modulation (DWT-
MCM) 

The Discrete Wavelet Transform 

Before explaining the data decomposition and reconstruction process, it is essential to 

introduce a discrete wavelet. This is because discrete wavelets have a direct effect on the 

properties of the decomposition and reconstruction of the data. The DWT plays significant 

role in signal processing where the signal can be decomposed into sets of wavelets that are 

orthogonal to its translations under different scaling. In other words, any signal in time-

domain can be transformed into another domain that contains both time and frequency, which 

precisely positions frequency structures over time to analyse different sized signal structures. 

The wavelet transform decomposes signals over dilated and translated wavelets 𝜑(𝑡). The 

regularity conditions imply that the basis function of the wavelet transform must possess 

temporal and spectral localization (Mallat, 2008). The reconstruction condition for regular 

𝜑(𝑡) is: 

 
 0=dt  (t)  (1) 

The system orthogonality depends strongly on the time position (k) and the scale index (j), 

which are derived from the scaling function 𝜗(𝑡) or the translation and the dilatation function 

𝜑(𝑡). According to (1), appropriately discretizing these parameters, the scaling parameters can 

be discretized in a logarithmic manner, whereas the Nyquist sampling rule can be used to 

discretize the time variable to obtain the two-dimensional parameterization of the wavelet 

function 𝜑𝑗,𝑘(𝑡) (Mallat, 2008). 

 )2(2)( 2/

, ktt jj

kj −= −−   (2) 

where the scaling index 𝑗 = 1,2, … , 𝐽 = 𝑙𝑜𝑔2(total number of subcarriers). Best time resolution 

is achieved when j=1 at the expense of poor frequency localization; whereas, if j=J, best 
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achievable frequency localization is obtained at the price or poor time resolution (Mallat, 

2008). 

Similarly: 

 )2(2)( 2/

, ktt jj

kj −= −−   (3) 

By using (2), members of the orthogonal wavelet family are obtained as: 
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The transmitted signal is then represented as: 
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where w and a represent the scaling and wavelet coefficients. 

Let h(k) denote the impulse response of the low pass filter (LPF) and g(k) represent the 

discrete impulse response of the high pass filter (HPF). At scale factor j, w and a are evaluated 

and related to the next factor j+1 as follows: 

  +−=
k

jj kamkhma )()2()( 1  (6) 

  +−=
k

jj kwmkgmw )()2()( 1  (7) 

Reconstruction and decomposition algorithms 

Figures 1 and 2 illustrate the basic configurations for implementing the DWT-MCM 

reconstruction (IDWT) and decomposition (DWT) algorithms. According to the Mallat 

algorithm (Mallat, 2008), 𝐿 = 1,2, … , 𝐽 = 𝑙𝑜𝑔2 (total number of subcarriers)  represents the 

IDWT or DWT levels. In the synthesis phase, the scaling and wavelet factors in (6) and (7) are 

further sampled by doubling, then followed by filter banks. On the other hand, the analysis 

phase passes these coefficients to the LPF and the HPF, and subsequently resamples them by 

a factor of 2. In this study, the total number of sub-channels (N) is equals to 128. In addition, 

the expected number of iterations of the reconstruction and decomposition process would 

range from 1 to 7. 
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Figure 1. IDWT diagram using filter banks 

 

 
Figure 2. DWT implementation using filter banks 
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Proposed Model of IIC and MIMO-IIC 

In a 2×2 MIMO scheme, the received signal at each receive antenna results from the 

combination of the transmitted signals from the transmitted antennas. At the first received 

antenna, the received signal contains four undesirable components — ICI components (H11) 

and (H21) and ISI components (H11) and (H21) — that result in interference issues. Those 

components occur due to the multipath fast-fading channel effect on the signal coming from 

both first and second antennas. At the second received antenna, the signal has four 

components — ICI components (H22) and (H12) and ISI components (H22) and (H12) — that 

result in interference issues, due to the multipath fast-fading channel effect on the signal 

coming from both first and second transmitting antennas, as depicted in Figure 3. 

 
Figure 3. System architecture for our proposed algorithm for MIMO-DWT-MCM configuration 

In general, with the index of the time instant k, the received data symbol y1,k received at the 

first antenna can be written as: 

kkISIkICIkISIkICIkCIRCkCIRC

kkkk

nxHxHxHxHxHxH

nhxhxy

++−+−+=

++=

,2,21,2,21,1,11,1,11,2,21,1,11

21,211,1,1
 (8) 

where H11 and H21 are modelled as independent and identically distributed (iid) complex 

Gaussian variables with zero mean and unit variance. In addition, these matrices can be 

described as a circulant matrix, nk is the additive white Gaussian noise (AWGN) at the kth time 

instant, and the matrices HCIRC, HICI, HISI ϵ ℂ N×N (Harbi & Burr, 2016a, 2016b). 
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To remove the interference term from the signal received at the receiver, the undesirable 

components ICI and ISI must be decreased. The calculation of the channel matrices HICI and 

HISI requires knowledge of both the length of CP and the impulse response of the channel. 

During the IIC process, the estimated values of the transmitted signal coefficients 𝑥̂1,𝑘 and 

𝑥̂1,𝑘−1 can be estimated from the first stream decoded signal (soft output of the upper LDPC 

decoder in Figure 3). Then, they are multiplied by the channel matrices to obtain H11,ICI 𝑥̂1,𝑘  

and H11,ISI 𝑥̂1,𝑘−1. During the MIMO-IIC process, the estimated values of the transmitted signal 

coefficients 𝑥̂2,𝑘 and 𝑥̂2,𝑘−1 can be estimated from the second stream decoded signal (soft 

output of the lower LDPC decoder in Figure 3), multiplied by the channel matrices to get H21,ICI 

𝑥̂2,𝑘 and H21,ISI 𝑥̂2,𝑘−1. Finally, after some iterations using all the obtained estimated 

components, the estimated received signal is given as: 

 

kkCIRCkCIRCk
nHH xxy ++=



,2,21,1,11,1
 (9) 

In the frequency domain, we can rewrite the signal received as: 

 

kk
H

CIRCk
H

CIRCk FnFFHFFH XXY ++=


,2,21,1,11,1  (10) 

The channel matrix can be rewritten as H11,CIRC = FHH11F (Sesia, Toufik & Baker, 2011) and the 

signal estimated at the receiver can be rewritten as: 

 

kk
H

kk nFHH XXY ++=


,221,111,1  (11) 

where H11 ϵ ℂ N×N can be diagonalized using the discrete Fourier transform, with the diagonal 

elements representing the channel response in frequency domain. That means, instead of the 

wavelet domain, MIMO detection must be done in the frequency domain. To achieve that, 

prior to MIMO detection, the combined signal is converted to the frequency domain. After 

detection, the obtained signal is converted back to the time domain, as depicted in Figure 3. 

Let Ncp, Lc, and T be the length of CP, the number of channel taps, and the coherence time of 

the downlink channel under the length of CP. Thus, T = Lc - Ncp - 1. Channel matrices H11,ICI, 

H11,ISI, H21,ICI, and H21,ISI can be written as: 
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It is obvious that undesirable components embedded within the channel matrix H1, H2 ϵ ℂ N×N 

depend on the actual value of the channel h11 and h21, and can be expressed as: 

 





















=

−

−−

1,11

1,111,11

1

00

0

C

CPC

L

NL

h

hh

H









 (16) 

 





















=

−

−−

1,21

1,211,21

2

00

0

C

CPC

L

NL

h

hh

H









 (17) 

for NCP = 0, HICI = HISI. 

Similarly, the ICI/ISI interference from the signal received at the second antenna can be 

decreased by using interference cancellation techniques. The received signal after some 

iterations can be rewritten as: 

 

kkCIRCkCIRCk
nHH xxy ++=



,2,22,1,12,2
 (18) 

In the frequency domain, we can rewrite the signal received as: 
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Channel matrices H22,ICI, H22,ISI, H12,ICI, and H12,ISI can be written as: 

 









=

−−−

−

TTNTNTN

TNT

ISI

H
H

)()()(

3)(

,22 00

0
 (21) 

 









=

−−−−−

−−

CPCP

CPCP

NTNTTNNTNTN

NTNTNT

ICI

H
H

)()()()(

3)(

,22 000

00
 (22) 

http://doi.org/10.18080/jtde.v9n4.426


Journal of Telecommunications and the Digital Economy 
 

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 9 Number 4 December 2021 
Copyright © 2021 http://doi.org/10.18080/jtde.v9n4.426 83 

 

 









=

−−−

−

TTNTNTN

TNT

ISI

H
H

)()()(

4)(

,12 00

0
 (23) 

 









=

−−−−−

−−

CPCP

CPCP

NTNTTNNTNTN

NTNTNT

ICI

H
H

)()()()(

4)(

,12 000

00
 (24) 

 





















=

−

−−

1,22

1,221,22

3

00

0

C

CPC

L

NL

h

hh

H









 (25) 

 





















=

−

−−

1,12

1,121,12

4

00

0

C

CPC

L

NL

h

hh

H









 (26) 

 

Simulation Results 

The standard of the LTE downlink for 2×2 MIMO-OFDM is employed with insufficient CP. In 

addition, it is assumed that the channel (characteristic) is known at the receiver. The statistical 

model of the channel is defined by the Power Delay Profile (PDP) in accordance with the ones 

in (3GPP, 2014) and Jakes’ model (Jakes, 1974). As a performance metric, we use Bit Error 

Rate (BER) to evaluate the performance of DWT-MCM with MIMO-OFDM systems. All 

deployments and channel model parameters are listed in Table 1. 

The simulation results of BER versus the Signal-to-Noise Ratio (SNR) for the 2×2 MIMO-

OFDM system are represented in Figure 4 for different cases of IIC and MIMO-IIC with 4-

QAM modulation and the EVA-LTE time-variant multipath channel with 300 Hz Doppler 

frequency. 

Table 1. Simulation Parameters Definition 

Parameters and Definitions Values 

The total number of sub-channels (N) 128 
Coherence intervals (Ntau) 6 
The number of sub-channels/coherence interval (NSc_tau) 12 
The number of sub-channels occupied (NSc) 72 
The number of taps/coherence intervals (Nslot) 2 
The number of symbols/tap (Nsym) 7 
The total symbols/coherence intervals (Ns) 14 
Modulation formats 4-QAM 
Sub-channels spacing (KHz) (Ss) 15 KHz 
Sample rate (Fs) Ss×N 
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Figure 4. Bit error rate versus Eb/N0 for MIMO-OFDM systems 

The simulation results of BER versus SNR for the 2×2 MIMO-DWT system are represented in 

Figure 5 for different cases of IIC and MIMO-IIC with 4-QAM modulation and the EVA-LTE 

time-variant multipath channel with 300 Hz Doppler frequency. The Haar wavelet transform 

is employed with six levels of the decomposition and reconstruction process. 

 
Figure 5. Bit error rate versus Eb/N0 for MIMO-DWT systems 

These figures demonstrate that the error rates are enhanced for MIMO-DWT systems 

compared with the traditional methods. For LDPC-MIMO-OFDM systems, the error rates are 

enhanced at the beginning of the process as depicted in these Figures. Later, after some 

iterations, the difference from perfect channel interference cancellation (PCIC) is about 2.7 dB 
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located at a bit error rate of 10-5. Figure 5 depicts the bit error rate versus the Eb/N0 for LDPC-

MIMO-DWT systems. It indicates that error floors are improved after the first iteration. Last, 

after some iterations, the difference from PCIC is about 2.01 dB located at bit error rate of 10-5. 

Conclusions 

We have studied the downlink transmission for the LTE channel to reduce the ICI/ISI 

interference using DWT and OFDM systems. In this paper, we proposed an iterative LDPC 

decoder algorithm to mitigate the interference issue for MIMO systems. Transmitted signals 

are affected by the time-variant multipath channel. The effective bandwidth will be reduced 

and a lack of orthogonality will occur. This will cause an error floor in the result of bit error 

probability and affect the quality of system performance. In the LDPC-MIMO-OFDM system, 

the difference in terms of Eb/N0 from the perfect channel interference cancellation curve is 

about 2.71 dB located at bit error rate of 10-5 and without using CP. In LDPC-MIMO-DWT, 

beyond 5 steps, the difference in terms of Eb/N0 from the PCIC curve is about 2.01 dB located 

at bit error rate of 10-5 under the LTE time-variant multipath channel with 300 Hz Doppler 

frequency and 4-QAM modulation. Hence, we conclude that our proposed iterative algorithm 

significantly improves the error floors. 
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