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Abstract: This paper presents an enhanced deep learning-based Non-Orthogonal Multiple 

Access (NOMA) receiver that can mainly be used in low signal-to-noise channels. We show how 

a better dataset generation strategy for training Deep Learning (DL) could result in better 

generalization capabilities. Then, we apply hyperparameter tuning using exhaustive search to 

optimize the DL network. A Long-Short-Term-Memory (LSTM) DL architecture is used. The 

results show superior Symbol Error Rate vs Signal-to-Noise Ratio performance compared to 

the state-of-the-art methods such as Maximum Likelihood, Minimum Mean Square Error, and 

Successive Interface Cancellation, even though the network is only half as complex as previously 

proposed DL networks in the literature.  
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Introduction  
Next-generation wireless networking has promised extensive capacity and a wide variety of 

interconnected devices. Not only is it required to support a vast amount of multimedia-based 

data traffic, but it must also support explosively growing, large-scale Internet-of-things (IoT) 

networks and an ever-growing user base (Chin, Fan & Haines, 2014). Although current 

multiple-access techniques such as Orthogonal Frequency Division Multiple Access (OFDMA) 

have allowed multiple users to share common network resources, they are, in terms of spectral 

usage, still inefficient enough to support the demands of the next-generation wireless 

communication systems (Hasan et al., 2020). 
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Fortunately, the rise of Non-Orthogonal Multiple Access (NOMA) techniques has promised 

many advantages over OFDMA (Islam, Zeng & Dobre, 2017) and has drawn extensive research 

interest in recent years. These advantages include more spectral efficiency (Khan et al., 2020), 

reduced latency (Ye, Y., et al., 2020), diverse power management policies (Park, Truong & 

Nguyen, 2019), and a vast increase in the simultaneous number of users it serves (Shin et al., 

2016).  

Unlike OFDMA, where guard intervals are used to reduce the effect of interference, NOMA 

uses no guards at all, thereby increasing spectral efficiency tremendously (Hasan et al., 2020). 

NOMA works by superimposing user signals, typically with different power levels, in a non-

orthogonal fashion, which are then transmitted (Liu et al., 2017). Successive Interface 

Cancellation (SIC) is performed where the user with the stronger channel condition is detected 

first while treating all other user signals as noise. Next, it is subtracted from the original stream 

at the receiver. The result is considered the user's signal with the weaker channel conditions 

and detected next (Chen, Jia & Ng, 2018). Maintaining perfect or near-perfect Channel State 

Information (CSI) is vital for NOMA if its superiority over OFDMA is to be realized, which is 

a challenging task (Hasan et al., 2020).  

The rise of Deep Learning (DL) in communication systems has provided another potential 

solution to channel estimation and detection in NOMA. DL is a method of learning from 

massive data with superior performance than traditional machine learning in many fields 

(Goodfellow, Bengio & Courville, 2016). Neng Ye et al. (2020) have proposed using deep 

multi-task learning to train several modules for channel estimation, mapping, and detection 

purposes of NOMA streams. However, their approach was not purely data-driven as some 

domain knowledge was exploited, and no evidence of parameter sharing makes it hardly a 

multi-task learning approach (Ruder, 2017). The researchers in Lin, Chang & Li (2019) have 

proposed a seven-layer neural network that can analyse CSI and detect transmitted sequences. 

While a seven-layer neural network is technically called a deep neural network, it often needs 

to comprise far more layers with varieties of architecture to warrant the badge of deep 

learning. Other researchers have suggested deep learning for various tasks in NOMA 

communication systems, like power minimization (Luo et al., 2019), long-term power 

allocation (Sun et al., 2019), and even joint precoding and decoding optimization (Kang, Kim 

& Chun, 2019). The literature is far more detailed to be listed in this short paper. Hence, we 

suggest Andiappan & Ponnusamy (2021) for a more comprehensive survey. 

This paper improves the research effort in Thompson (2019), where a single DL network was 

used for channel estimation and detection. We chose this research for the following reasons. 

Firstly, their approach is end-to-end, where no pre-processing and/or domain knowledge are 

required. Secondly, it does not require channel estimation, which is a drawback of the 
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traditional SIC detector. Thirdly, user signals are detected simultaneously in a single-shot 

fashion, rather than successively. However, their approach suffers from overfitting. 

Overfitting is when a DL fails to generalize from the training data, leading to poor classification 

performance. In addition, we have not, to the best of our knowledge, found any research, in 

the context of NOMA deep-learning-based receivers, where bias/overfitting and optimization 

are discussed and/or proved. We will show how a better-crafted dataset, training scheme, and 

simplified architecture can significantly reduce overfitting and increase performance. 

The rest of the paper is divided into four sections. We will elaborate on the basic assumptions 

and scenario setting throughout the simulation. In the next section, we discuss the modelling 

of the DL network and our workflow. Then, we discuss the modelling procedure and 

hyperparameter tuning phase. Finally, we report on the simulation result and compare the 

performance of our approach to other state-of-the-art methods. 

Basic Assumptions  
This paper is essentially an improvement over the work presented in Thompson (2019). We 

will show how a better dataset generation strategy and careful fine-tuning of hyperparameters 

would improve accuracy and reduce overfitting. We will adhere to the same OFDM model 

assumptions. We repeat the details here for the reader’s convenience.  

For a fair comparison, we will also consider the case of two user terminals connected to a base 

station via a NOMA uplink, as illustrated in Figure 1. Each user will have a single antenna for 

transmitting data. The base station will receive superimposed signals from user terminals 1 

and 2, and added noise. Since the mechanism for determining CSI is not considered in this 

paper, we will assume perfect CSI knowledge at the transmitters, i.e., the users, and the 

receiver, i.e., the base station.  

With the assumption of ℳ-subcarriers and 𝒩𝒩 users, we can write the amount of received 

signal in the frequency domain on subcarrier 𝒦𝒦 as (Thompson, 2019): 

 
𝒴𝒴(𝒦𝒦) = ��𝒫𝒫𝑖𝑖(𝒦𝒦)ℋ𝑖𝑖(𝒦𝒦)𝒳𝒳𝑖𝑖(𝒦𝒦) + 𝒲𝒲(𝒦𝒦)

𝒩𝒩

𝑖𝑖=1

 (1) 

where 𝒴𝒴(𝒦𝒦), is the received signal, 𝒫𝒫𝑖𝑖(𝒦𝒦) is the amount of transmitted power by user (i) on 

subcarrier 𝒦𝒦, 𝒳𝒳𝑖𝑖(𝒦𝒦) represents the transmitted symbol by user (i), and 𝒲𝒲(𝒦𝒦) models additive 

white Gaussian noise. It is assumed by Thompson (2019) that the total power is (𝒫𝒫), whereas 

the power allocation coefficient for user (i) is ℴ𝑖𝑖(𝒦𝒦) = 𝒫𝒫𝑖𝑖(𝒦𝒦) 𝒫𝒫⁄  and is constrained to have a 

unity sum. Finally,  ℋ𝑖𝑖(𝒦𝒦) is the discrete Fourier transform of the multi-path channel 𝒽𝒽𝑖𝑖(𝓉𝓉) 

given by (Thompson, 2019): 

http://doi.org/10.18080/jtde.v10n1.471


Journal of Telecommunications and the Digital Economy 
 

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 10 Number 1 March 2022 
Copyright © 2022 http://doi.org/10.18080/jtde.v10n1.471 95 
 

 
𝒽𝒽𝑖𝑖(𝓉𝓉) = �𝜗𝜗𝑖𝑖,ℓ 𝛿𝛿(𝓉𝓉 − 𝜏𝜏𝑖𝑖,ℓ) 

ℒ

ℓ=1

 (2) 

where 𝜗𝜗𝑖𝑖,ℓ is the complex channel gain and 𝛿𝛿() is the impulse function with a 𝜏𝜏𝑖𝑖,ℓ delay for user 

(i) along path ℓ. We will assume a Rayleigh fading channel and total paths (ℒ) of 20. 

 
Figure 1. NOMA scenario of Thompson (2019) showing an uplink scenario of user terminal 1 & 2 sending 
packets to base station. 

Modelling and Workflow 
Since this research effort is based upon a data-driven modelling approach, we have followed a 

standard machine-learning modelling procedure, as shown in Figure 2(a). Figure 2(a) is a 

typical supervised classification scenario. For it to work, we need pairs of input-output 

examples. Firstly, we artificially generate samples of received OFDM data packets. To that end, 

a 64-subcarrier OFDM system is assumed. Each received packet has three symbols per user in 

which the first two packets are fixed pilots, while the third is a data symbol. The output of the 

training examples is one of 16 different combinations of the symbols that could be transmitted 

by users 1 and 2 in a QPSK baseband modulation. The reader is encouraged to refer to 

Thompson (2019) for more details. 

However, our improvements compared to Thompson (2019) are that the training dataset is 

generated at different Es/No levels ranging from 5 to 40 dB. The reasoning behind that is that 

the training dataset should be sampled uniformly from the probability distribution function 

of the data model, rather than sampled at only the highest modelled Es/No value. The latter 

would result in a DL bias towards cases with high signal-to-noise levels. In contrast, if the 

generated training dataset were at only low Es/No levels, then the resulting DL model would 

have difficulties learning the underlying structure of the mapping between input-output pairs, 

as much of the training data comprises high uncorrelated noise. In perfect scenarios, the 

training dataset should have a balanced number of samples per output label/class and samples 

that depict all the “extremes” and typical cases the input is expected to have. 

Next, we construct the DL model using Long-Short-Term-Memory (LSTM) layers. LSTMs are 

types of Recurrent Neural Networks used widely to model data sequences (Goodfellow, Bengio 

Base 

Station 

User 

Terminal 1 

User 

Terminal 2 

𝒽𝒽1(𝓉𝓉) 

𝒽𝒽2(𝓉𝓉) 

http://doi.org/10.18080/jtde.v10n1.471


Journal of Telecommunications and the Digital Economy 
 

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 10 Number 1 March 2022 
Copyright © 2022 http://doi.org/10.18080/jtde.v10n1.471 96 
 

& Courville, 2016). Each LSTM layer comprises hidden units representing the amount of 

information that should be remembered between time steps. The number of LSTM layers and 

the number of units within each layer are hyperparameters that we have tuned using 

exhaustive search to optimize the model's performance. The LSTM layer is often preceded by 

an input layer, which acts as a buffer and data preparation for the LSTM layer. On the other 

hand, the LSTM layers are often followed by fully connected neural-network layers to linearly 

separate the features obtained by the LSTM layer, and a Softmax layer to output the 

probability of the predicted class for each label. Finally, a classification layer converts these 

probabilities into a verdict representing the predicted label (see Figure 2(b)). MATLAB Deep 

Neural Network is used for both modelling and simulation.  

 
Figure 2. (a) Workgraph showing the major steps from modelling to LSTM training, testing, and fine-tuning; 
(b) layers details of the LSTM deep learning network 

After testing its performance following the training phase, performance and fine-tuning are 

carried out in the DL model. The accuracy of both the training and testing data subsets is 

registered and compared to reduce bias and overfitting. For fine-tuning, we have considered: 

the number of LSTM layers, the number of hidden units, and the number of neurons in the 

fully connected layer.  

Modelling Results 
In this section, we report the simulation results of the scenarios presented in the previous 

section. Firstly, we have generated a training dataset at six Es/No levels, namely: 5, 12, 19, 26, 

33, and 40 dB. Each level had 1,000 samples per class for a total of 96,000 samples. This is 

only one-fifth of the training set size used by previous research efforts. While having a larger 
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dataset size could help overcome potential overfitting, it substantially increases training time. 

The shorter the training time, the more simulation runs can be performed to fine-tune the 

model’s hyperparameters. The training dataset has been divided into 90% training and 10% 

validation. Table 1 shows how we have varied some of the model hyperparameters and the 

number of layers for that end. 

Table 1. Hyperparameters tuning by exhaustive search  

Run No. No. of LSTM 
layers 

No. of LSTM units 
per layer 

No. of Neurons in 
the fully 

connected layer 

Training 
accuracy (%) 

Validation 
accuracy (%) 

1 1 16 16 48.18 43.81 
2 2 16 16 53.95 49.66 
3 3 16 16 47.48 42.8 
4 1 32 16 78.11 70.73 
5 2 32 16 79.91 70.73 
6 1 64 16 90.28 74.8 
7 1 128 16 93.09 65.4 
8 1 64 two layers [4 16] 70.4 49.3 
9 1 64 two layers [16 16] 88.1 66.45 
10 1 64 two layers [32 16] 89.03 68.46 

 
Our procedure was to change only one hyperparameter while keeping all others fixed. This 

hyperparameter was increased gradually until no further enhancement to the accuracy was 

possible. Then, we changed to another hyperparameter and so on. From Table 1, we started 

with a straightforward LSTM layer that has 16 units only. We noticed that increasing the 

number of layers in runs number 2 and 3 did not substantially increase accuracy but, rather, 

a slight decrease in validation accuracy was noticed. Furthermore, increasing the number of 

the fully connected layers or the number of neurons beyond 16 did not significantly impact 

accuracy. The setup of Thompson (2019), shown here as run number 7, suffered from 

overfitting, as there is a high difference of about 27 percentage points between training and 

validation accuracy.  

The highest validation accuracy was registered in run 6 while, at the same time, keeping 

overfitting to a minimum. Overfitting is problematic in machine learning as it cripples the 

model's ability to generalize and, therefore, “learn” from data. However, we expect to have 

some generalization error because, when noise becomes dominant in low Es/No levels, there 

would not be anything for the model to learn from, as the underlying signal structure is deeply 

buried inside the highly random nature of noise. We, therefore, settled with a value of 

hyperparameters obtained in run number 6, as it is a compromise between simplicity, higher 

validation accuracy, and “acceptable” overfitting. However, this issue could be investigated in 

future research. 
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Symbol Error Rate of User 1 and 2 

 
Figure 3. SER Curves for users 1 and 2 vs SNR. Our proposed optimized receiver is shown in red. LSTM of 
(Thompson, 2019) shown in sky blue. Other traditional methods are displayed in solid green (ML), dashed blue 
(LS) and dashed black (MMSE). 

This section reports the results of using the trained deep-learning network on some test 

datasets and compares the results to that of Thompson (2019) and other standard methods. 

We will consider these standard methods: Maximum Likelihood (ML), Least Squares (LS), 

and Minimum Mean Square Error (MMSE) based SIC receivers. A typical procedure is 

followed for these methods, starting by estimating the channel using Least Squares (LS) and 

Minimum Mean Square Error (MMSE). We have varied the Signal-to-Noise Ratio (SNR) while 

registering the Symbol Error Rate (SER) value per-channel basis. To keep a fair comparison, 

we used a fixed phase shift and a cyclic prefix (CP) length of 20. Figure 3 shows the simulation 

results.  

Our method is shown in red, marked with circles and crosses for users 1 and 2, respectively, 

and named ODL. In contrast, Thompson (2019) is shown in cyan marked with triangles for 

users 1 and 2 and named DL. The other curves are that of ML, LS, and MMSE. Figure 3 shows 

that the performance of our method exceeds that of all others, especially at low SNR. It proves 

how a better training strategy and careful optimization procedure can result in powerful and 

robust networks. However, as the SNR increases, the gap between the DL approach and the 

ML receiver becomes smaller, particularly for the weaker user 2. Hence, our approach is more 

suitable for channels with low SNR levels. 

http://doi.org/10.18080/jtde.v10n1.471


Journal of Telecommunications and the Digital Economy 
 

Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 10 Number 1 March 2022 
Copyright © 2022 http://doi.org/10.18080/jtde.v10n1.471 99 
 

Conclusion 
NOMA has become a de facto method for modern mobile communication systems because it 

promises superior spectral efficiency over OFDMA. With NOMA, the issue of reliably detecting 

users sharing the same resources in non-orthogonal settings is an ongoing research problem. 

One method to that end is to use deep learning and its capabilities to generalize from examples.  

We have shown how we can improve one of the state-of-the-art deep learning approaches by 

generating a training dataset at different SNR levels, registering both the training and 

validation accuracy and optimizing the hyperparameters of the network. We have also shown 

how to decrease the impact of overfitting on the network capability of generalization. 

The results prove our approach's superiority over state-of-the-art DL, ML, and SIC 

approaches, in particular at low signal-to-noise ratios. However, we recommend more 

network testing using various CP lengths, channel phase fading, and pilot symbols, though the 

robustness of DL in such situations has already been proven by other researchers.  
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