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Abstract: Face recognition is the dominant biometrics system used to authenticate an 

individual’s identity in various applications. Most commercial face recognition systems rely on 

2D face images, but the changes in the environment lighting and a person's posture affect the 

accuracy of the 2D face recognition systems. Hence, the 2.5D face recognition system arises as 

the solution to eliminate the drawbacks of the 2D face recognition system. The depth feature in 

the 2.5D data (depth image) provides additional information that can help to improve the 

accuracy and robustness of 2.5D face recognition systems, particularly in challenging scenarios. 

This paper proposes a fusion-based approach for the 2.5D face recognition system to enhance 

the system’s performance, where feature fusion involves the combination of features extracted 

from the depth image. Gabor-based Region Covariance Matrices (GRCMs) that serve as face 

identifiers combine the depth and texture images in the structure of a covariance matrix. 

Several experiments on different fusions have been conducted in the Face Recognition Grand 

Challenge version 2 (FRGC v2.0) database. This paper shows that the max-min fusion applied 

to the surface normal (y-direction) and the mean curvature has achieved the best accuracy rate 

of 93.66% among the other fusion approaches used.  

Keywords: fusion-based approach, depth image, 2.5D data, Gabor-based Region Covariance 

Matrices, 2.5D face recognition 

Introduction 
Face recognition has attracted the interest of researchers, since it enables non-intrusive 

detection, identification, and authentication without seeking the individual’s knowledge or 

consent. Researchers have recently been passionate about investigating the 2.5D face 

recognition system considering that, although the 2D face recognition system has made 
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significant improvements in the last decade, the effectiveness of the findings is still heavily 

reliant on lighting conditions and a person’s position. The disadvantages of 2D face 

recognition, such as lighting changes and difficulty with facial emotions, could potentially be 

overcome using 2.5D face recognition. Furthermore, by gathering less data and processing it 

more effectively, 2.5D face recognition boosts the reliability of 3D face recognition, which is 

time-consuming and costly. Each pixel — x and y on the camera’s perspective — in a 2.5D 

image contains just one depth value — z — which shows its distance from the camera’s scene. 

As a result, the 2.5D data accurately depicts the 3D structure, uninfluenced by variations in 

colour or lighting conditions (Chong et al., 2016). 

The Gabor-based region covariance matrices (GRCMs) as face identifiers have gained interest 

and are frequently used in facial recognition systems to perform feature extraction. GRCM 

works in a way that integrates the Gabor feature with the face picture in the covariance matrix. 

The covariance matrix is an essential component of the region covariance matrices (RCMs) 

because it is able to gradually combine distinct image data while maintaining the connection 

among the features of the image (Chong et al., 2014). In this paper, GRCM is used to merge 

the depth and texture images, which are presented in sequential and direct addition methods, 

respectively. 

In this work, a fusion-based 2.5D face recognition system is suggested to enhance the accuracy 

rate of the system. The typical approach for forming feature fusion in a face recognition system 

is by combining two features or merging two features using certain algorithms. The feature 

fusion technique, which generates more informative features, could strengthen the reliability 

of 2.5D face recognition. Several studies are carried out in order to determine the optimum 

fusion technique that produces the maximum accuracy rate and raises the system’s efficiency. 

The experimental findings for each fusion strategy have been documented, along with the best 

and worst fusion techniques that were defined based on the results. 

The objectives of this paper to overcome the constraints of the present 2.5D face recognition 

system are: (1) to investigate the different features of 2.5D data; (2) to study the fusion 

techniques of the 2.5D face recognition system; and (3) to conduct experiments in order to 

evaluate the system’s effectiveness. 

Literature Review 

Face recognition 

A face recognition system is a form of biometric security that uses facial biometric data and 

patterns to authenticate a person’s identification. Two-dimensional (2D) face recognition 

represents a type of facial recognition technology that leverages the advantage of the two-
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dimensional geometry of a human face. The public widely accepts the 2D face recognition 

system, and the gadget used to capture the image is less expensive than a 3D face recognition 

system. The main drawback of 2D face recognition is that the accuracy of the output is strongly 

reliant on the illumination and postures of an individual in the captured picture or photo. With 

these constraints, three-dimensional (3D) face recognition is presented as a solution to the 

dilemma of 2D technology. A 3D face recognition system outperforms a 2D facial recognition 

system because it can gather additional data (surface normal, curvature) from a person’s face 

and is less susceptible to lighting. As contrast, the primary technical limitation of 3D facial 

recognition techniques is the acquisition of a 3D picture, which normally demands a range 

camera, which is costly.  

2.5D face recognition techniques have been developed to address the high-cost issue in 3D 

face recognition systems. 2.5D face recognition looks to be an effective technique that makes 

use of depth (range) face images. 2.5D data is a “digital image” created by 3D face scanning 

that represents a certain position’s face look. To create a comprehensive 3D face model, a large 

amount of 2.5D data is collected from various views in 3D facial recognition technology. The 

2.5D face recognition system requires just one use of the 2.5D data. 2.5D face data, which 

stores three-dimensional coordinates — x, y, and z — is perfect for the structure because it 

provides a depth value, the z-coordinate, which is a necessary component of a 3D model. Each 

2.5D face data set is translated into a depth representation for computational efficiency. The 

depth value, which is the z coordinate, is kept in a 2D matrix structure known as a depth image 

(Chong et al., 2019). Table 1 shows a comparison of all three forms of face recognition. 

Table 1. Differences between three types of face recognition (2D, 2.5D and 3D) 

Face Recognition Technology 2D 2.5D 3D 
Image Format Texture-based image 

 

Depth image 

 

3D facial model 

 
Pre-processing Element Easy Middle Hard 
Cost of Gadget Cheap Middle Expensive 
Coordinates Involved  Coordinates x, y Coordinates x, y, z Coordinates x, y, z 
Limitations Posture, facial 

expression, lighting 
Posture, facial 

expression 
Posture, facial 

expression 

Feature fusion in face recognition 

Bodla et al. (2017) presented a novel deep heterogeneous feature fusion network strategy for 

blueprint face recognition that employs complementary substance in features provided by 

several deep convolutional neural networks (DCNN). In addition, a feature fusion approach 
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that merges two independent feature sources to represent a face image with the use of a 

Canonical Correlation Analysis (CCA) algorithm has been proposed by Nhat & Hoang (2019).  

Dutta et al. (2021) suggested a complement components (CC) mathematical model for face 

elements based on depth points extracted from the depth image. Furthermore, an improved 

Region Covariance Matrix (RCM) for the 2.5D face identification system is implied to boost 

the recognition efficiency of the system by overcoming the vanilla RCM’s shortcomings in 

obtaining distinctive features from face photos; and failure in recognition of faces is presented 

by Chong et al. (2017).  

Region covariance matrix approaches 

Tuzel et al. (2006) suggested the Region Covariance Matrix (RCM) approach, which gives a 

new area classifier and demonstrates how it could address two problems: recognition of an 

object and texture categorising. This approach is represented as a covariance matrix to 

combine numerous picture numbers produced within a sole image region. The RCM is 

implemented to define the characteristics of the region. However, RCM shows poor results 

when implemented in a 2D face recognition technique, proving that it is unsuitable to be 

employed as a face classifier in 2D technology. 

As a result, Pang et al. (2008) recommended Gabor-based area covariance matrices (GRCMs) 

as face descriptors to identify a human face. The Gabor features include more due to their 

strong spatial localisation, size, and position consistency. By including Gabor characteristics 

in the calculation of area covariance, the RCM’s descriptiveness, along with its differentiating 

ability, may be significantly improved. Thus, the proposed GRCM approach has the potential 

to generate excellent face recognition results. 

 
Figure 1. The proposed 2.5D fusion-based face recognition system 
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Research Methodology 
Based on Figure 1, the suggested approach consists of four phases: the data preprocessing 

stage, feature fusion stage, feature extraction stage, and distance measure stage. Note that the 

2D and 2.5D partial data are pre-processed before being combined to generate the inter-

feature fusion. 

Pre-processing of data 

To get started, the partial 2.5D and 2D face images need to be pre-processed to standardise 

the size, minimise noise, and establish zero mean normalisation of the image. The pre-

processing processes of 2.5D data involve the collection of coordinates, computation of depth 

image, cropping, normalising, and standardising of faces in order to build a normalised depth 

picture. The x, y, and z coordinates are collected from each data point in 2.5D data. To extract 

a face region from the partial 2.5D data, the unnecessary background setting is removed. This 

depth image is generated by interpolating the z-coordinate retrieved from the rectangular grid 

in the x-y plane. Cropping the picture according to the location of both the eyes and the mouth 

yields a canonical depth image. The standard depth image is normalised via a typical standard 

adjustment, which rescales the data to ensure the variance and mean are set to zero. Figure 2 

shows the procedure of the pre-processing steps for 2.5D data. 

 
Figure 2: The procedure for the pre-processing of 2.5D data 

The 2D pre-processing steps include grayscale image computing, image cropping, and 

normalising along with standardising faces. The 2D face image data is converted into a 

grayscale image. The textual data is then manually cropped based on the middle of the lips and 

both eyes. Following that, the standard normal transformation is employed to normalise the 

canonical texture image depending on the locations of the mouth and eyes. The 

standardisation phase aims to achieve zero mean and unit variance. Figure 3 illustrates the 

process of pre-processing for 2D data. 
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Figure 3. The procedure for the pre-processing of 2D data 

Feature fusion 

Feature fusion represents the integration of features from different parts or phases of an 

entity. In a face recognition system, feature fusion involves combining two distinct techniques; 

merging and mixing the methods improves the system’s accuracy and dependability. Different 

facial traits could represent various parts of a person’s facial characteristics, and employing 

these unique characteristics may enhance one’s facial recognition. Facial recognition 

techniques extensively employ feature fusion to boost the system’s recognition accuracy rate 

(Talab et al., 2022). In this section, different feature fusion methods including inter-feature 

fusion, intra-feature fusion, and fusion integration methods have been used to fuse features. 

Inter-feature fusion is known as one of the feature fusion methods in a face recognition system. 

The process of inter-feature fusion includes merging data from several different characteristics 

or features collected from various face modalities or portions. This fusion approach attempts 

to enhance the overall effectiveness of the facial recognition system by using complementary 

information from diverse sources. For instance, this method merges different types of 

information, such as a 2D image with a depth image, using various fusion techniques, such as 

max fusion, min fusion, and many more.  

By contrast, intra-feature fusion differs from inter-feature fusion in the way that it aims to 

integrate data through a sole feature description. In order to gather more accurate and reliable 

information, it requires acquiring several descriptions from a single area of the face. This 

fusion method seeks to improve the description of a single feature through various 

orientations and sizes. For example, some properties can be extracted using the depth image’s 

comprehensive collection of face topological data, such as the curvature feature. 

Furthermore, a specific kind of fusion technique that combines previously fused data once 

again is referred to as the fusion integration approach. This fusion technique aims to combine 

and gather more discriminative features from the fused data to boost the system’s 

performance. For instance, this fusion method is generated by integrating the intra-feature 

fusion with another intra-feature fusion using different fusion approaches, such as the sum 
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rule, max-min fusion, and others. The comparison between inter-feature fusion, intra-feature 

fusion, and fusion integration is exhibited in Table 2. 

Table 2. Comparison between three types of feature fusions 

 Inter-Feature 
Fusion 

Intra-Feature 
Fusion 

Fusion Integration 

Structure Combination of the 
depth image with 2D 

image 

Features produced from 
depth image, such as 

mean curvature, surface 
normal etc. 

Combination of the 
intra-feature fusion with 

another intra-fusion 
feature 

Number of 
fusions occurring 

One One Two 

Involves fusion 
technique? 

Yes No Yes 

 

Inter-feature fusion 
Inter-feature fusion combines features extracted from several raw images to boost the system’s 

accuracy. A novel fusion dataset is developed by combining the two distinct characteristics 

provided by the textual data and the depth data. Minimum fusion is known as one of the fusion 

strategies. This technique creates a fused image by selecting the pixels with the minimum data 

point (Kaur et al., 2021). For example, Equation (1) shows the use of minimum fusion (Mn) 

with the depth image (A) and the 2D image (B).  

 𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴,𝐵𝐵) (1) 

Additionally, maximum fusion (Mx) is another fusion approach that separates high-intensity 

pixels from images to form a combined image as illustrated in Equation (2) (Kaur et al., 2021). 

 𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴,𝐵𝐵) (2) 

The Max-Min fusion (M) represents one of the fusion techniques that utilises the values 

retrieved from both the maximum and minimum fusion. The fused picture is created by 

identifying the average scores of the components with the lowest and highest scores within the 

entire input picture (Kaur et al., 2021). 

 𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴,𝐵𝐵) −𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴,𝐵𝐵) (3) 

The sum rule can also be applied in the system as one of the fusion approaches to increase the 

system’s accuracy. The sum rule method adds up the features to form a new feature. 

Intra-feature fusion 
Intra-feature fusion represents another form of feature fusion approach to increase the 

reliability of the system. The depth image itself collects an extensive amount of face topological 

information, from which these characteristics may be retrieved for intra-feature fusion.  
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Surface normal represents one of the intra-feature fusion approaches to boost the accuracy 

rate of the face recognition system. Three sorts of data from axes x, y, and z could be extracted 

from an individual’s face, since the 2.5D face photos often collected in a point-cloud form are 

made up of x, y, and z coordinates for a face. The vectors with the values Nx, Ny, and Nz 

represent the three separate data sets collected from the face (Vezzetti & Marcolin, 2012). To 

generate a new equation, the sum rule of the surface normal (SN) is employed for these 

acquired different surface normal points, as defined in Equation (4). 

 𝑆𝑆𝑆𝑆 =  𝑁𝑁𝑁𝑁 +𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁 (4) 

Besides surface normal, an example from among the intra-feature fusion methods used to 

improve the effectiveness of the face recognition system is curvature as a 3D feature. The 

minimum and maximum curvatures are the two basic curvatures used to characterise the local 

shape of a surface. The parameter 𝑘𝑘1 is defined as the maximum curvature, while 𝑘𝑘2 is defined 

as the minimum curvature. Then, mean curvature can be computed after getting the maximum 

and minimum curvature values (Vezzetti et al., 2014). Mean curvature (H) is the average of 

the minimum (𝑘𝑘2) and maximum (𝑘𝑘1) values, where 𝑘𝑘1 >  𝑘𝑘2 as shown in Equation (5). 

 𝐻𝐻 =  1
2

(𝑘𝑘1 + 𝑘𝑘2) (5) 

Furthermore, the Gaussian and mean curvature represents the intrinsic and extrinsic 

geometric characteristics of the surface. Gaussian curvature (K) is determined from the 

surface’s differential geometry; it remains local, intrinsic, and preserved by affine translation 

(Vezzetti et al., 2014). It is the product of the two essential curvatures, as displayed in Equation 

(6). 

 𝐾𝐾 = 𝑘𝑘1𝑘𝑘2 (6) 

Fusion integration approach 
The fusion integration approach is a type of fusion method that fuses the fused data again. 

Fusion integration in this section is generated by combining the intra-feature fusion with 

another intra-feature fusion retrieved from the previous section. For instance, the best 

recognition rate, which is achieved by the surface normal (y-direction) in the intra-feature 

fusion, is combined with the second highest recognition rate, which is the surface normal 

(average), to form a new fusion (fusion integration) and it has been examined through various 

fusion methods such as using Sum Rule, minimum fusion, and others. There are many types 

of fusion approaches that can be used in order to increase the system’s efficiency and boost 

the system’s performance. 
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Feature extraction 

Face recognition necessitates feature extraction that involves segmenting facial pictures, 

generating images, and scaling faces. Gabor-based region covariance matrices (GRCMs) are 

frequently employed as face descriptors in facial recognition systems nowadays. Gabor 

features have more spatial localisation, dimension, and alignment precision than first- and 

second-order grades, and hence involve more information. By including Gabor characteristics 

in the calculation of covariance area, the RCM’s descriptiveness, along with its differentiating 

ability, may be significantly improved (Pang et al., 2008). Consequently, the proposed Gabor-

based RCM approach yields satisfactory face recognition scores. The region covariance matrix 

is generated by combining the feature mapping function via Gabor features, as indicated in 

Equation (7), where R is the fusion technique applied (Chong et al., 2016). 

 𝜙𝜙(𝑅𝑅, 𝑥𝑥,𝑦𝑦) = [𝑥𝑥 𝑦𝑦 𝑔𝑔00(𝑥𝑥,𝑦𝑦),𝑔𝑔01(𝑥𝑥,𝑦𝑦), … ,𝑔𝑔74(𝑥𝑥,𝑦𝑦) ] (7) 

The collection of Gabor features, the use of a block-based strategy, and the calculation of the 

GRCM are the three processes that make up this phase. Equation (8) describes the Gabor-

based region covariance matrix (GRCM). The Gabor (G) dimensions are determined by the 

size of the covariance matrix (42×42 dimension), which is formed by multiplying the x and y 

coordinates of the pixels using a 40 Gabor wavelet and adding up the results (Chong et al., 

2016). Figure 4 shows the process of generating the GRCM. 

 𝐺𝐺 ∈ ℜ42×42 (8) 

 
Figure 4. The generation of GRCM map 

Distance measure 

The distinctive features of a person’s face, such as whether the person is male or female, 

whether the person is wearing glasses or not, and many other things, could be determined and 

categorised using distance measure metrics. The Euclidean distance is employed to calculate 

the distance between two coordinates in 2D space and to determine the exact distance between 

parameters in the space of N dimensions along a straight line. Therefore, in facial recognition, 
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smaller values indicate a higher level of similarity between two faces. The Euclidean distance 

computation equation is shown in Equation (9), assuming that the image’s face characteristic 

is to be represented as P = (x1, x2, …, x128) and the training sample’s facial traits are to be 

identified as Q = (y1, y2, …, y128): 

 𝑃𝑃𝑃𝑃 =  �(𝑥𝑥1 − 𝑦𝑦1)2 + (𝑥𝑥2 − 𝑦𝑦2)2 + ⋯+ (𝑥𝑥128 − 𝑦𝑦128)2 (9) 

The Euclidian distance measurement, unfortunately, is only precise on a straight line. The 

recognition rate is expected to be low when employing the Euclidian distance technique, since 

the human face involves numerous curve lines. 

Tensor Manifold is a non-Euclidean space that is flat locally but curved globally. Each 

covariance matrix associated with GRCM remains uniquely equal to a single location on the 

Tensor manifold. The Euclidean distance measures the distance between two points (array-

based data) in Euclidean space, while the particular distance measure calculates the distance 

between two covariance matrices (matrix-based data) within the Tensor manifold (Chong et 

al., 2014). The space between two GRCMs must take into account the geometric qualities of 

the manifold, a measurement termed geodesic distance, which represents the shortest 

distance between two GRCMs. The tensor manifold yields greater accuracy than Euclidean 

distance since it does not reside in Euclidean space (Chong et al., 2016). 

Cholesky Distance (CHOL) is recognised as a re-parameterisation measurement that divides 

each GRCM evenly into a mixture of a lower matrix with a triangle form and its transpose 

(Chong et al., 2014): 

 (𝑃𝑃,𝑄𝑄) =  ∥ 𝐿𝐿𝑃𝑃 −  𝐿𝐿𝑄𝑄 ∥𝐹𝐹 (10) 

LogDet Divergence distance (LD) represents a collection of information-theoretic approaches. 

It is a kind of matrix difference that determines how far away two GRCMs are (Chong et al., 

2014): 

 (𝑃𝑃,𝑄𝑄) = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑃𝑃−𝑄𝑄
2
� − 1

2
𝑙𝑙𝑙𝑙𝑙𝑙|𝑃𝑃𝑃𝑃|  (11) 

where |. |  is the determinant of the matrix. 

Another of the metrics used to determine distance is the Affine Invariant Riemannian Metric 

(AIRM). This approach employs a similarity measure based on the tensor manifold, which 

includes eigenvalue decomposition, exponentials, logarithms, and square roots (Chong et al., 

2014). 

 (𝑃𝑃,𝑄𝑄) = �∑ 𝑙𝑙𝑙𝑙2𝜆𝜆𝑖𝑖(𝑃𝑃,𝑄𝑄)5
𝑖𝑖=1  (12) 
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where the eigenvalues of P and Q are represented by 𝜆𝜆1, … , 𝜆𝜆5 . 

Additionally, the Log-Euclidean Riemann Metric (LERM) is another method for calculating 

distance. This method uses Euclidean metrics logarithms’ space to compute the distance 

between two GRCMs. LERM represents a standard measurement that is employed within the 

tensor manifold in a face recognition system (Chong et al., 2014): 

 (𝑃𝑃,𝑄𝑄) =∥ 𝐿𝐿𝐿𝐿𝐿𝐿(𝑃𝑃) − 𝐿𝐿𝐿𝐿𝐿𝐿(𝑄𝑄) ∥𝐹𝐹 (13) 

where Log(.) indicates the logarithm of the matrix and ∥·∥𝐹𝐹 represents the Frobenius norm.  

Recognition rate 

Every biometrics system must determine the accuracy rate of its method because it illustrates 

the system’s accuracy and reliability. The true positive (TP) is the number of times the 

technique correctly identifies the same individual in two different images. The true negative 

(TN) denotes the number of times the algorithm properly distinguishes between two distinct 

persons in the images. By dividing the total number of correctly identified images (TP and TN) 

with the total number of images, the recognition rate is determined: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛.𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

 × 100% (14) 

Furthermore, one method for evaluating the efficiency of the system is to measure the amount 

of time in seconds that the system utilised to complete the recognition procedure of the 

individual from the database. A more rapid computation time used by the system results in an 

increase in the effectiveness of the system. 

Experiments and Discussion 

Face dataset 

The Face Recognition Grand Challenge version 2 (FRGC v2.0) is being used in this paper. 

Every time a person’s biometric information is collected, a subject session is taken, including 

four controlled still images, two uncontrolled still shots, along with a 3D picture of an 

individual. The collection of data in FRGC v2.0 involves 466 individuals, 4,007 subject 

sessions, and 32,056 recordings.  

Experimental setup 

A part of FRGC v2.0 is implemented, which consists of a total of 254 subjects. A total of 16 

images, 8 images from both the 2.5D partial data and 2D data, were selected randomly for 

each individual, corresponding to a total of 4,046 images. Each image has been resized and 
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standardised to 73×61 pixels. The pixel intensity of the picture has been adjusted to a zero 

mean and zero unit variance. The GRCM’s Gabor kernel is set up with the following 

parameters:  𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 =  𝜋𝜋
2

, 𝜎𝜎 = 𝜋𝜋, 𝑓𝑓𝑣𝑣 =  √2. When the pixel position (x, y) information is added, 

a Gabor wavelet with the dimensions 40×40 becomes 42×42. Two distinct fusion schemes, 

such as intra-feature fusion and inter-feature fusion, along with fusion integration methods, 

including max fusion, min fusion, max-min fusion, and sum rule, have been examined. 

Besides, the 2D image, depth image as well as feature fusions use the block-based GRCM in 

the feature extraction stage. 

Results and analysis 

Results of inter-feature fusion 
Figure 5 exhibits the recognition rate of the several inter-feature fusions based on sum rule, 

min fusion, max fusion and max-min fusion, using difference distance measures. Based on 

Figure 5, sum rule with the combination of both the depth image and the 2D image scores the 

most significant recognition rate using LERM at 93.31%. The sum rule outperforms the single 

depth image because it incorporates characteristics from both the depth and 2D images. In 

addition to the sum rule, methods like min fusion, max fusion, and max-min fusion achieve 

better performance than a depth image. This demonstrates that inter-feature fusion 

approaches outperform a sole depth image for most distance measures. 

 
Figure 5. Recognition rate (%) of the inter-feature fusion 

The computation time for each inter-feature fusion is shown in Figure 6. It can be seen that 

every inter-feature fusion utilises the shortest amount of time to compute the recognition rate 

using Euclidean distance. However, the recognition rate for each inter-feature fusion using 

Euclidean distance is the worst compared to the other distance measures, as shown in Figure 

5. In contrast, although the computation time of the LERM distance to calculate the 

recognition rate is the longest among the other distance measures as shown in Figure 6, but 
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the recognition rate of the majority of the inter-feature fusion scores the highest performance 

in LERM distance, as illustrated in Figure 5. 

 
Figure 6. Computation times for inter-feature fusion 

Results of intra-feature fusion 
Figure 7 demonstrates the recognition rate of the intra-feature fusions. It shows that the 

majority of intra-feature fusions perform better than the depth image. The y-direction surface 

normal holds the highest intra-feature fusion performance, especially in the LD distance 

measure, where it obtained the accuracy rate of 93.32%. Contrarily, Gaussian curvature yields 

the poorest performance when contrasted with the other intra-feature fusions. Hence, it can 

be concluded that Gaussian curvature is not able to perform well in 2.5D face recognition. 

 
Figure 7. Recognition rate (%) of the intra-feature fusion 

Additionally, the recognition rate for the surface normal in the x and y directions is almost 

identical. However, the accuracy rate for the surface normal in the z direction appeared to be 

the lowest among the three directions in the surface normal. Figure 7 has proven that summing 

the surface normal in the x, y, and z directions produces the best results. Moreover, single 

curvature (curvature minimum or curvature maximum) is not able to compete with the mean 
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curvature (combination of curvature minimum and curvature maximum) as it contains the 

feature integration of these two curvatures. 

 
Figure 8 Computation times for intra-feature fusion 

Figure 8 displays the computation time for each intra-feature fusion. The total computation 

time of each distance measure used to calculate the recognition rate in intra-feature fusion is 

almost identical with the inter-feature fusion. Figure 8 has proven that every intra-feature 

fusion utilised the shortest amount of time to compute the recognition rate in Euclidean 

distance. Still, unfortunately, the recognition rate for each intra-feature fusion is the lowest 

compared to the other distance measures, as shown in Figure 7. On the other hand, the 

computation time of the LERM distance to calculate the recognition rate is the longest among 

the other distance measures. However, the recognition rate of the majority of inter-feature 

fusions achieves superior performance in LERM distance, as illustrated in Figure 7. 

Results of fusion integration 
The recognition rate for each fusion integration is presented in Table 3. There are five different 

combinations of fusion integration that have been tested in this section. 

Table 3. Recognition result of the fusion integration 

Fusion Integration 
Recognition Rate (%) 

Euclidean CHOL LD AIRM LERM 
Depth image 80.05 82.94 90.5 90.58 91.03 
Max fusion: 
depth image + surface normal (y-direction) 84.57 86.24 90.83 89.84 90.69 
depth image + mean curvature 83.7 84.29 90.63 90.36 90.72 
surface normal (y-direction) + mean 
curvature 85.35 86.61 93.41 92.83 91.88 

surface normal (y-direction) + surface normal 
(average) 85.35 87.52 93.08 93.08 91.88 

surface normal (average) + mean curvature 81.43 82.54 89.48 89.24 90.36 
Min fusion: 
depth image + surface normal (y-direction) 68.92 75.05 86.56 85.29 85.7 
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Fusion Integration 
Recognition Rate (%) 

Euclidean CHOL LD AIRM LERM 
depth image + mean curvature 63.4 71.36 83.81 82.86 83.8 
surface normal (y-direction) + mean 
curvature 84.57 85.14 92.78 92.12 92.74 

surface normal (y-direction) + surface normal 
(average) 81.98 84.12 91.76 91.12 91.25 

surface normal (average) + mean curvature 83.35 85.44 91.47 91.09 91.19 
Max – Min fusion: 
depth image + surface normal (y-direction) 79.49 83.62 88.33 87.09 88.78 
depth image + mean curvature 75.67 81.53 86.78 86.41 87.31 
surface normal (y-direction) + mean 
curvature 89.68 89.37 93.66 93.35 93.51 

surface normal (y-direction) + surface normal 
(average) 83.28 84.49 90.93 89.99 89.71 

surface normal (average) + mean curvature 85.31 85.55 91.85 91.36 92.13 
Sum Rule fusion: 
depth image + surface normal (y-direction) 80.16 83.17 91.07 90.72 90.6 
depth image + mean curvature 80.96 83.43 90.68 90.77 90.86 
surface normal (y-direction) + mean 
curvature 86.16 86.55 92.91 92.44 93.11 

surface normal (y-direction) + surface normal 
(average) 84.70 85.51 93.56 92.84 92.80 

surface normal (average) + mean curvature 83.20 84.83 91.22 91.07 91.36 
 
Max fusion is produced by contrasting and obtaining the most outstanding values between the 

two aspects. The reason for choosing max fusion as one of the fusion methods in this section 

is its effectiveness in selecting the highest recognition rate among the data which is resistant 

to alterations and can obtain a specific facial trait. Table 3 illustrates that max fusion achieves 

the highest score with 93.41% in LD distance when it is utilised on the surface normal (y-

direction) and mean curvature. 

In addition, min fusion is created by contrasting and taking the lowest values between the two 

traits. Min fusion is selected in this section as it is simple to employ and is useful in retrieving 

the minimum score among the data to minimise the false positives. Compared to other fusion 

techniques, the min fusion method, which combines the mean curvature and the surface 

normal (y-direction), has the highest score of 92.78 %. 

Furthermore, max-min fusion is created by subtracting the max and min feature fusions. Due 

to the effectiveness of max-min fusion, which merges the advantages of both the max and min 

fusion, max-min fusion is chosen in this section. The system can maintain reliability and 

accuracy by using max-min fusion, lowering the likelihood of false positives and increasing the 

system’s resistance to noisy data. Among the different distance measures in Table 3, max-min 

fusion applied to the surface normal (y-direction) and mean curvature achieved the highest 

recognition rate, with 93.66% in LD. 
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Figure 9. Computation times for fusion integration 

Moreover, the sum rule, also referred to as sum fusion, is produced by integrating two distinct 

characteristics from different sources. The summing of the matching scores from different 

sources enhances the system’s recognition rate, as it contains various facial characteristics 

from the sources. Due to these advantages, the sum rule is selected in this section. As can be 

observed from Table 3, contrasted to other distance measures, the sum rule that was 

implemented to the surface normal (y-direction) along with the surface normal (average) 

scored the second-best result in the LD distance measure with a score of 93.56%. 

In short, it can be concluded that the surface normal (y-direction) + mean curvature, which is 

the combination of the first and second placed intra-feature fusions, achieves the highest 

scores in almost every type of fusion method including the max fusion, min fusion and max-

min fusion. Besides that, most of the max, min, max-min fusion, and sum rule approaches 

outperform a single depth image in terms of the recognition rate. By combining two distinct 
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characteristics as a new fusion data (fusion integration), rather than using just one feature, the 

efficiency of 2.5D face recognition can be improved. 

The effectiveness of the fusion integration, including max, min, max-min, and sum rule fusion 

is shown in Figure 9 via the computation of time in seconds. The total computation time of 

each distance measure used to evaluate the accuracy rate in fusion integration is almost 

identical with the inter-feature fusion and the intra-feature fusion times. Figure 9 shows that, 

for every fusion integration, the recognition rate in Euclidean distance was computed in the 

least amount of time. However, as shown in Figure 9, the recognition rate for each fusion 

integration is the poorest contrasted with the other distance metrics. By contrast, the 

processing period of the LERM distance to compute the recognition rate is the longest among 

the distance measurements. Nevertheless, the accuracy rate of most of the fusion integrations 

obtains higher performance in LERM distance. 

Comparison with other state-of-the-art methods 
Table 4 compares the performance of the state-of-the-art results with the proposed method. 

From Table 4, our proposed method shows excellent performance compared to the state of the 

art. 

Table 4. Comparison between the state of the art and the proposed method 

Authors Method used  Recognition Rate (%) 
Kamencay et al. (2014) CCA-PCA fusion 85% 
Chong et al. (2014) Textual image + depth image 80% 
Chong et al. (2016) Intra-feature fusion 90.87% 
Liu et al. (2020) Echo State Network (ESN) fusion 90% 
The proposed method Fusion integration 93.66% 

 
In this paper, the proposed method is inspired by the work of Chong et al. (2014; 2016), which 

uses various fusion methods to increase the system accuracy rate. With this inspiration, the 

proposed method recommends using the fusion integration approach, which merges fused 

data once again to gain more powerful features to improve the system’s performance. 

According to Table 4, the proposed method slightly outperforms the state of the art with an 

accuracy rate of 93.66%, proving the method’s efficiency by using the fusion integration 

method. 

Discussion 

Figure 5, Figure 7, and Table 3 show the recognition results for the single depth image, inter-

feature fusion, intra-feature fusion, and fusion integration (max fusion, min fusion, max-min 

fusion, and sum rule fusion). In this study, the max-min fusion used on the surface normal (y-

direction) and mean curvature produced the highest accuracy rate of 93.66% compared to the 
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other methods assessed. The depth image is utilised in this experiment as a baseline system 

for comparing the outcome regarding the feature fusion techniques employed. As can be 

observed from the experimental results, the accuracy rate of a single depth image is not 

optimistic, and almost all feature fusion techniques outperform a sole depth image. In 

summary, this experiment indicates that feature fusion outperforms a sole depth image in 

terms of recognition performance.  

Although almost all feature fusion techniques can improve the performance of the 2.5D face 

recognition system, each of them still has some limitations. For example, the inter-feature 

fusion method that combines the features obtained from the 2D and depth data can perform 

well compared to a sole depth image. However, this feature fusion method that integrates 

multiple features increases the dimensions and complexity of the feature space, which requires 

more resources and time for processing.  

On the other hand, the other features extracted from the depth image are called intra-feature 

fusion. Although most of the features derived from the depth image perform better than the 

single depth image itself, the recognition rate using the derived features is not satisfactory 

compared to the inter-feature fusion and fusion integration methods. In addition, the fusion 

integration method, in which the fused data is fused again, achieves the highest recognition 

rate among the other fusion methods. However, the performance of the fusion integration 

approach strongly depends on the quality of the features, and features containing noise may 

affect the effectiveness of the method.  

Conclusions 
The 2.5D face recognition system with the use of feature fusion approach is proposed in this 

paper. In the proposed method, the use of more than one type of feature by merging and 

mixing them up helps to boost the recognition rate of the system. Based on the experimental 

findings, in comparison to all the fusion techniques, this study proves that the max-min fusion 

employed on the mean curvature and surface normal (y-direction) has obtained the best 

accuracy rate at 93.66%. Moreover, nearly all fusion techniques outperform a single depth 

image in terms of accuracy rate. The computation time of the feature fusion methods relying 

on several geodesic distance measurements has also been studied in this paper. In the 

experiment, the best recognition rate was achieved by LD and LERM distance. In future work, 

more different fusion strategies will be studied and applied to enhance the 2.5D face 

recognition system. 
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