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1. Introduction 

Computing devices are increasingly equipped with multiple network interfaces, e.g. LTE and 

WiFi in the case of smartphones. Efficiently using multiple network interfaces on such multi-

homed hosts is a challenging problem. Approaches such as Multipath TCP (MPTCP) (Ford, 

Raiciu, Handley & Bonaventure,2015) allow load balancing of traffic across multiple links and 

paths on a per-packet granularity. The problem with MPTCP is that it requires both ends, i.e. 

client and server, of the end-to-end path to support the protocol. Despite the many years since 

the introduction of MPTCP, its deployment and use are minimal with a few notable exceptions, 

such as Apple's Siri, as stated in https://support.apple.com/en-au/HT201373. 

In contrast, we consider a client-side only approach to load balancing across multiple network 

interfaces, which does not require any special support from the server. In this approach, load 
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balancing at the level of granularity of packets is not possible, due to the fact that TCP 

connections are bound to IP addresses and hence host interfaces. Thus, we do not consider 

approaches such as Mobile IP (Perkins, 2002), Host Identity Protocol (HIP) (Moskowitz, 

Nikander, Jokela & Henderson, 2010) or Site Multihoming by IPv6 Intermediation (Shim6) 

(Abley, Black & Gill, 2003) here, due to their limited adoption. Instead, we consider a practical, 

flow-based load balancing approach, where the level of granularity for distributing network 

traffic is network flows, e.g. TCP connections. We discussed the basic idea of this approach 

and its preliminary implementation using Software Defined Networking and OpenFlow in 

Al-Najjar, Layeghy & Portmann (2016). Our initial evaluations in Al-Najjar, Layeghy & 

Portmann (2016) showed the potential and practicality of this approach. However, it was 

limited in regard to the considered network traffic (download of identical, fixed size files) as 

well as the considered network links with static link capacity. 

In this paper, we investigate the potential of flow-based load balancing on multi-homed hosts 

in a realistic setting. We specifically focus on Web and video traffic, due to their predominance 

and relevance for overall quality of user experience. 

The potential of flow-based load balancing depends on the characteristics of the network 

traffic, e.g. the number, size distribution, and level of concurrence of flows. In the extreme 

case, we could have a web page that is downloaded via a single TCP connection. In our 

approach, this flow would be allocated to a single interface, and there would be no potential 

gain for load balancing and using the other available network interface and corresponding 

path. 

It is therefore important to understand the characteristic of Web traffic in regards to network 

flows. We have performed extensive measurements and analysis of the web traffic for 

HTTP(s)/TCP connections, based on the Alexa top 100 web pages (Alexa, n.d.). Our analysis 

shows that typical websites require a large number of flows (typically TCP connections), which 

shows there is a potential for flow-based load balancing to improve the download performance 

and user experience. 

We also investigated controlling the HTTP traffic in SDN-based multi-homed devices over the 

QUIC (Quick UDP Internet Connection) protocol. QUIC is a relatively new transport-layer 

protocol specifically designed for web traffic (Roskind, 2013). Like TCP, QUIC is also 

connection-oriented. QUIC carries about 7% of the global Internet traffic and 30% of Google 

traffic (Langley et al., 2017), and is becoming increasingly relevant. 

In addition to web traffic, this paper also considers controlling the flow of video traffic. 

Dynamic Adaptive Streaming over HTTP (DASH) (ISO, 2014) traffic running over the QUIC 

protocol will be considered in our use case. Because DASH traffic is considered as a single TCP 
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or UDP flow and that flow is only allocated to a single network interface, it is not as amenable 

to flow-based load balancing as is web traffic. However, we consider the scenario of having 

video streams as background traffic, and investigate how this impacts on the efficiency of our 

SDN-based traffic load balancing approach for web traffic in multi-homed devices. 

Our experimental evaluation of flow-based load balancing is based on an implementation 

using an OpenFlow Software Switch, Open vSwitch (OVS), and the Ryu SDN controller. For 

our experiments, we consider the realistic and practical scenario of a dual-home host, with 

both an LTE and a WiFi interface. We performed extensive measurements where we 

established the simultaneous and co-located link capacity of LTE and WiFi interfaces at our 

university campus. We then used these realistic link capacity measurements for our 

experiments, using link emulation. 

Our results show that flow-based load balancing can significantly reduce the page load time, 

for the realistic and practical traffic and link scenario that we considered. Somewhat 

surprisingly, it even outperforms MPTCP.  

The rest of this paper is organised as follows. Section 2 gives a brief background on the concept 

of SDN and OpenFlow, MPTCP and QUIC. Section 3 explains the idea of flow-based load 

balancing as well as our implementation. In Section 4, we present our analysis of web traffic 

and its potential for flow-based load balancing. Sections 5 and 6 present our experimental 

evaluation of flow-based load balancing, for two different link capacity scenarios. Finally, 

Section 7 discusses related works, and Section 8 concludes the paper. 

2. Background 

2.1. OpenFlow 

Since our flow-based load balancer is implemented in SDN using OpenFlow, we provide a brief 

introduction to the relevant key concepts. 

In Software Defined Networks (SDN), a key idea is the separation of control and data plane. 

The SDN architecture with its three layers (infrastructure, control and application) is shown 

in Figure 1. The logically centralised SDN controller configures the forwarding behaviour of 

forwarding elements (SDN switches) via a southbound interface. 

http://doi.org/10.18080/ajtde.v6n4.166
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Figure 1. SDN Architecture 

The OpenFlow protocol (McKeown et al., 2008) proposed by Open Networking Foundation 

(available on https://www.opennetworking.org/) is the dominant SDN southbound interface. 

It allows the controller to install forwarding rules using a match-action paradigm. The rules 

can match on various L2-L4 header fields, including MAC and IP addresses, as well as the 

ingress port via which the packet was received. 

OpenFlow supports different types of actions. The output action allows the switch to forward 

packets via a specific port. OpenFlow also supports a set-field action which allows rewriting of 

packet header fields. This is typically used for functions such as Network Address Translation 

(NAT). 

The interaction between the SDN controller and switches occurs via OpenFlow messages. A 

switch can encapsulate and send a data packet to the controller via an OpenFlow Packet-in 

message. The controller can send a packet to the switch via a Packet-out, with instructions (a 

set of actions) on how to handle the packet. The controller also can install forwarding or flow 

rules on switches via OpenFlow Flow-Mod messages. 

The OpenFlow protocol provides messages that allow querying statistics from switches in 

regard to links, ports and flows. Port Stats is one of these message groups. The controller 

requests statistics of active ports by sending a PortStatsRequest message. The switch replies 

with a PortStatsReply message, carrying a set of statistics related to each port, such as the 

cumulative number of sent and received packets and bytes, as well as the number of packets 

that have been dropped or had errors. 

Flow Stats is another type of OpenFlow probing message type. It allows collecting statistics of 

the active flow entries (forwarding rules) in the switch. The controller requests this 

information via sending a FlowStatsRequest message, upon which the switch replies with a 

FlowStatsReply message. The message contains information related to each installed rule, for 

instance table_id, priority, number of bytes/packets that matched the rule, the active duration 

of the flow, and the match/action fields. 
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Our flow-based load balancer, which will be discussed in detail in this paper, was implemented 

using these basic OpenFlow primitives. 

2.2. MPTCP 

Multi-Path TCP (MPTCP) is one of the current approaches for sending traffic across multiple 

network interfaces and paths on multi-homed hosts (Ford et al., 2015). We briefly explain 

MPTCP, since we will use it as a benchmark against our proposed approach. However, this is 

a somewhat unfair comparison, since MPTCP requires support on both ends of the 

communication path, which is a key reason for the very slow and minimal adoption of MPTCP. 

In contrast, our proposal is a client-side only solution, which makes deployment very easy. 

MPTCP adds a layer between the Application and Transport layers in the TCP/IP protocol 

stack, as shown in Figure 2. It creates multiple TCP subflows that can be sent via multiple 

different network paths. As mentioned, MPTCP requires support from both connection sides 

(the client and the server). If the server does not support MPTCP, the protocol will fall back to 

basic TCP. 

 
Figure 2. MPTCP Protocol 

To establish an MPTCP connection, a host uses the normal TCP handshaking packets 

represented by SYN, SYN/ACK, and ACK with an additional option. This MP_CAPABLE 

option allows checking if both ends support MPTCP and, if not, the connection falls back to a 

normal TCP connection. In the case where MPTCP is supported by both client and server, a 

64-bit authentication key is generated and exchanged. The keys are required in the next stages 

for creating and authenticating TCP subflows. Once both ends confirm supporting MPTCP, 

and authentication keys have been exchanged, a new TCP subflow can be initiated. Each 

MPTCP subflow also uses the same TCP handshaking packets with an MP_JOIN option. The 

option contains a number of flags and the address ID of the corresponding host. 

http://doi.org/10.18080/ajtde.v6n4.166
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MPTCP allocates network traffic among multiple network interfaces at the level of granularity 

of TCP segments. This is in contrast to our approach, where the level of granularity is limited 

to flows. As a result, one would expect MPTCP to outperform our flow-based approach. Based 

on our experiments, this is not the case. This can be explained by limitations of MPTCP that 

have been identified in previous work (Chen et al., 2013). 

2.3. QUIC Protocol 

The QUIC protocol has been proposed by Google in order to overcome some of the limitations 

of TCP, specifically when used in conjunction with HTTP traffic (Langley et al., 2017). 

QUIC runs on top of UDP, making it easy to be deployed and updated. Figure 3 shows the 

architecture of HTTP2 over QUIC compared with HTTP2 over a TCP connection (Langley et 

al., 2017; Cui et al., 2017). 

 
Figure 3. HTTP2 over QUIC vs HTTP2 over TCP (Cui et al., 2017). 

The QUIC protocol not just supports multi-stream multiplexing for HTTP traffic, like HTTP/2 

over TCP, but also overcomes data delivery issues related with this type of multi-streaming. 

The HTTP/2 over TCP protocol multiplexes the data units related to a certain server into 

multiple streams carried via one connection. Delivering those streams is done in a sequential 

manner and, when loss happens, this stream will block the others, causing “head-of-line 

blocking”. In contrast, the QUIC packets consist of multiple frames. Each frame encompasses 

stream frames resulting from multiplexing data units. If loss happens in a stream frame, the 

other frames will not be affected by that loss. This type of concurrent delivery can mitigate the 

aforementioned problem with TCP. QUIC also supports security, such as provided via TLS in 

HTTP. The simpler and more efficient connection establishment of QUIC, in contrast to 

TCP/TLS, is shown in Figure 4 (Cui et al., 2017).We will consider the QUIC protocol in the 

experimental evaluation of our flow-based load balancing approach. 
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3. Flow-based Load Balancing 

In this section, we briefly discuss the architecture of our flow-based load balancing system, 

and its implementation using OpenFlow. The overall idea is that, for each new flow (e.g. TCP 

or QUIC/UDP connection) initiated by the client, the SDN controller will decide to which 

network interface it will be allocated. Once a flow is allocated to an interface, all the 

corresponding packets will be sent via that interface. Changing the interface mid-flow is very 

difficult, and requires approaches such as Mobile IP, Shim6, HIP, etc. that are avoided in this 

work for the sake of simplicity and ease of deployment. 

 
Figure 4. Handshaking of HTTP2 over TCP and QUIC protocols 

The architecture of our system is shown in Figure 5. While we consider the scenario of two 

network interfaces, the approach works for any number of interfaces. The OpenFlow switch is 

bound to the two physical network interfaces, eth0 and eth1. To provide it with the ability to 

switch network traffic across those interfaces in a way that is transparent to the application, 

we need to add a layer of indirection. We do this by adding a virtual interface pair (veth0 and 

veth1). All application traffic is sent to veth1, via configuring the routing table. The OpenFlow 

switch can then control the forwarding of traffic from the application (entering the switch via 

veth0), via OpenFlow forwarding rules. In our implementation, these rules are installed by the 

SDN controller, which runs locally on the host. 
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Figure 5. System Architecture 

To enable transparent switching across different interfaces, we need to perform Network 

Address Translation (NAT), as well as ARP handling, discussed in more detail in Al-Najjar, 

Layeghy & Portmann (2016). 

In our implementation, we used Open vSwitch (available on http://open-vswitch.org/

download/) version 2.4 as our switch, and Ryu (available on http://osrg.github.io/ryu/) as our 

SDN controller. 

3.1. Detecting and Controlling Flows 

Web traffic can be transmitted over TCP or QUIC/UDP. This section discusses how new flows 

are detected and allocated to a particular network interface. 

In the case of TCP, new flows are detected as follows. When the first packet of a new flow (i.e. 

TCP SYN packet) arrives at the OpenFlow switch, it will not match an existing forwarding rule, 

and hence it is forwarded to the controller via an OpenFlow Packet-In message. At this point, 

the controller can check that this is indeed the first packet of a new TCP connection, i.e. that 

the SYN flag is set. In OpenFlow version 1.3, which is used for our implementation, matching 

cannot be made on TCP flags, so this check can only be done at the controller. From OpenFlow 

version 1.5, matching on TCP flags is supported, and this can be done at the switch. 

At this point, the controller decides which interface to allocate this flow to, based on the 

particular load balancing algorithm that is used, which will be discussed in the following 

section. The same basic approach is used to detect new QUIC/UDP flows, but with the 

additional filtering for UDP destination port 443, which is the port number allocated for QUIC 

servers. 

Once the decision of allocating the flow (TCP or QUIC) to the specific network interface has 

been made, the controller installs a corresponding forwarding rule on the switch, which then 

sends all the packets belonging to this flow via the chosen interface, and performs the 

corresponding address rewriting operations. The OpenFlow match fields consist of the 5-tuple 
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of IP source and destination address, source and destination port number, as well as type of 

transport layer protocol. 

3.2. Load Balancing Algorithm 

To allocate network flows across multiple network interfaces, we use a Weighted Round Robin 

(WRR) load balancing algorithm, which allocates the number of flows to interfaces in 

proportion to their respective link capacity. To estimate the capacity of the different links in 

the context of SDN and OpenFlow, we utilise an active probing methodology that we have 

introduced in one of our previous works (Al-Najjar et al., 2016). Unfortunately, this allocation 

can only be based on the number of flows, and does not consider the size of different flows. 

This is due to the fact that the flow allocation decision needs to be made when the first packet 

of a flow, e.g. a TCP SYN packet, is seen by the controller. Future work could potentially 

consider flow size estimation, to further improve the efficiency of the algorithm. However, as 

we will see, our flow based Weighted Round Robin algorithm considering the number of flows 

performs very well, due to the relatively large number of flows and their reasonably well-

behaved size distribution, as discussed in the following section. 

4. Web Traffic Flow Analysis 

Since our load balancing approach is limited to the granularity of flows, its potential for 

performance improvement depends on the characteristics of the traffic in regard to flow 

availability and distribution. As mentioned before, in the extreme case of an application using 

a single large flow, flow-based load balancing cannot provide any benefit. 

Since our focus is on web traffic, we performed an experimental analysis of typical websites 

with regard to their flow characteristics. Our methodology and results are discussed in the 

following. 

For our analysis, we considered the top 100 Alexa websites. We downloaded the content of 

each website (main page) via a Python script using the Selenium WebDriver API (described 

on https://github.com/SeleniumHQ/selenium/), using HTTP/1.1. We disabled cookies as well 

as caching. All the traffic was captured as a pcap file, and the Tshark tool (Combs, 2012) 

(version 1.12.1) was used to analyse the data. 

As a first result, Figure 6 shows the distribution of the number of flows for the 100 websites. 

We see a relatively long-tailed distribution, with a significant number of websites using more 

than 30 flows. 

http://doi.org/10.18080/ajtde.v6n4.166
https://github.com/SeleniumHQ/selenium/


Australian Journal of Telecommunications and the Digital Economy 
 

Australian Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 6 Number 4 December 2018 
Copyright © 2018 http://doi.org/10.18080/ajtde.v6n4.166 84 

Based on our analysis, news sites tend to have a particularly large number of flows. Examples 

include msn.com, theguardian.com, sohu.com, and sina.com, with 151, 169, 207, and 281 

flows, respectively. The average number of flows is around 42. 

Overall, these results are encouraging for the potential of flow-based load balancing. 

 
Figure 6. Alexa Top 100 Websites Flows Histogram 
 

We also considered the size of the flows, and Figure 7 shows the distribution of flow sizes in 

kilobytes, using a log scale on the y-axis. We can see that, while the majority of flows are a few 

hundred KB or less, there are a small number of outliers, with the largest flow size close to 

5MB. 

 
Figure 7. Alexa Flows Sizes 

In summary, the distribution of flow numbers and sizes per website indicates that flow-based 

load balancing has the potential to deliver a performance gain, i.e. achieve a reduced page load 

time. We will further explore this via experiments in the following sections. 

5. Load Balancing Experiment — Static Link Capacity 

To evaluate the potential of flow-based load balancing for the web browsing use case, we 

initially performed an experiment using a scenario with a static link capacity. 

http://doi.org/10.18080/ajtde.v6n4.166
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Figure 8 shows the topology of our test-bed. The end-host is dual-homed and is connected to 

two gateways, GW1 and GW2, that are connected to a physical gateway (GW) which provides 

connectivity to the Internet and provides access to the Alexa top 100 websites. The nodes were 

implemented as virtual machines (with Ubuntu Linux version 3.13.0-24 OS) and the whole 

topology was emulated using GNS3, a network emulation software available on 

https://www.gns3.com/. This will make sure that the last hop link presents the bottleneck in 

the end-to-end path, and should allow our load balancing approach to perform well. 

 
Figure 8. The Proposed Load Balancing Topology 

As a performance metric, we use the page load time (PLT) (Wang & Jain, 2012), i.e. the time 

from when the first HTTP GET Request is sent, until the page is completely loaded. We again 

used the Selenium Webdriver API, along with Chromium (v58.0.3029.110), to measure the 

PLT for all the Alexa top 100 websites. 

The static link capacity scenario is evaluated with HTTP traffic over TCP and QUIC/UDP. 

5.1 Web Traffic over TCP 

In this experiment, we measured the page load time (PLT) for each of the Alexa top 100 

webpages 10 times, and took the average as our performance metric. We used the weighted 

round robin (WRR) load balancing algorithm, as discussed above, to allocate flows to the two 

interfaces considered in our experimental scenario. As a reference, we also measured the PLT 

for the single-interface case as well. 

Figure 9 shows the cumulative density function (CDF) of the PLT parameter for all 100 

websites. The figure clearly shows the advantage of the flow-based load balancing method. For 

example, in the single interface case, 50% of all page downloads are completed in under 12 

seconds. In contrast, using both interfaces via flow-based load balancing, 50% of all downloads 

are completed in under 7.5 seconds. Overall, using both interfaces via flow-based load 

balancing achieves a reduction of the average page load time by almost 37%. This is a 

respectable improvement, considering the theoretical maximum is a reduction of 50%, and 

that we are working with a very coarse grained level of granularity, i.e. flows rather than 

packets. 

http://doi.org/10.18080/ajtde.v6n4.166
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Figure 9. CDF of PLT for Static Link Capacity Scenario 

We wanted to compare our flow-based load balancing approach with MPTCP, even though 

this is a somewhat unfair comparison. We expect MPTCP to perform significantly better, since 

it is able to perform load balancing on a packet-by-packet basis. On the flip side, it requires 

both ends to the communication path to be upgraded to support the mechanism. In contrast, 

our approach is a purely client-side approach, and therefore easy to deploy. 

Unfortunately, none of the Alexa top 100 websites that we considered supported MPTCP. The 

only website that we were able to find that supports MPTCP was, somewhat ironically, 

mptcp.org (Paasch, et al., 2013). For this measurement, we used the Linux kernel 

implementation of MPTCP (v.090), with the default parameter settings, as in (Paasch et al., 

2013).  

 
Figure 10. Mean PLT for Web Traffic over TCP (Static Link Capacity Scenario) 

Figure 10 shows the page load time of mptcp.org, for three different cases: single-interface, 

MPTCP and flow-based weighted round robin (WRR) load balancing. Compared with the 

single-interface case, MPTCP reduces the page load time by 37%. Surprisingly, flow-based load 

balancing (WRR) clearly outperforms MPTCP and achieves a PLT reduction of 51%. Our 

investigations showed that MPTCP achieves a very uneven allocation of traffic across the two 

equal-capacity paths, with 1.3 MB of traffic sent across eth0 (see Figure 8) and only 130KB 

http://doi.org/10.18080/ajtde.v6n4.166
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sent across eth1. Another potential reason for MTPCP’s relatively poor performance is its 

limitations in dealing with small flows, as reported in (Nikravesh et al., 2016). 

5.2 Web Traffic over QUIC/UDP 

As previously mentioned, QUIC is a protocol developed by Google and is hence supported 

mostly by Google products (e.g. Chrome and Chromium browsers), as well as Google services 

(Google search engine and YouTube servers). In order to run QUIC, both communication end-

points, i.e. the client and the server, need to support the protocol. In our experiments, we 

activated QUIC by enabling the “-enable-quic” option on the Chromium browser, using the 

Selenium API. The evaluation was done via two scenarios, with only web (HTTP) traffic, and 

another one with simultaneous web and video traffic.5.2.1 Web Traffic Only. 

This scenario is about evaluating the control and load balancing of web traffic over the QUIC 

protocol. Given the limited support of QUIC on web servers, we used the YouTube main page. 

We loaded the page 10 times, and recorded the average page load time (PLT). We compared 

the results of our WRR-based load balancing approach with the scenario with a single interface 

only. 

 
Figure 11. Mean PLT for Web Traffic over QUIC/UDP (Static Link Capacity Scenario) 

Figure 11 shows the results. We can see that our WRR-based algorithm decreases the average 

page load time by around 30% compared to the benchmark scenario with a single interface 

only. While the benefits of our SDN-based load balancing approach are not quite as big as in 

the case of MPTCP, this experiment shows that it can still achieve a significant improvement 

when using the QUIC/UDP protocol. 

5.2.2 Simultaneous Web and Video Traffic 

Recently, multi-homed devices have allowed users to utilise multiple applications 

simultaneously. For instance, gadgets with decent operating systems, such as Android, offer a 

feature of having multi-window usage to their users. It is common to surf a website via a 

window while streaming a video through another window. Therefore, we adopt that scenario 

http://doi.org/10.18080/ajtde.v6n4.166
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to evaluate different application traffic types using our proposed system. The traffic to be 

evaluated is not only short-lived flows (such as webpage traffic), but also long-lived flows (e.g. 

DASH video traffic). 

In this scenario, we consider the simultaneous flow of web and video traffic. This is an 

increasingly realistic and common scenario, with recent versions of Android supporting a 

multi-window feature, which allows users to watch a video in one browser window, while 

browsing a range of web pages in another window. To consider this scenario in our 

experiments, we used two Chromium browser windows. In the first one, we loaded the landing 

pages of the Alexa top 100 web sites and measured the page load time (PLT). In the other 

browser window, we continuously streamed a short video loaded from YouTube using the 

DASH (Dynamic Adaptive Streaming over HTTP) protocol, running over QUIC. The Big Buck 

Bunny video (available on https://www.youtube.com/watch?v=o3-17GUAfNU) used in the 

experiment is 3 minutes long and encoded at a rate of 1 Mbps. 

Our analysis using Wireshark showed the video traffic is transmitted as a single QUIC/UDP 

flow, as expected. This does not allow any load balancing of the video traffic across multiple 

interfaces. Instead, we can consider the video stream as background traffic for the 

simultaneously occurring web flows. Our experiments aimed to investigate the interaction 

between the two types of flows, and the overall performance of our flow-based traffic control 

and load balancing approach. Since DASH uses adaptive video encoding depending on the 

available bandwidth (Huang et al., 2012 Akhshabi, Begen & Dovrolis, 2011), we also monitored 

the transmission rate of the video streams, by regularly polling the SDN switch via OpenFlow 

Flow Stats messages. The measured video transmission rate, or throughput, can be used as an 

indicator of the quality of the video, as viewed by the user. Figure 12 shows the average page 

load time (PLT) for the top 100 Alexa webpages for our weighted round robin (WRR) based 

load balancing approach, as well as the single interface scenario as a reference. We can see 

that, even with the video traffic in the background competing with the web traffic, our load 

balancing approach achieves a reduction in PLT of around 22% compared to the case where 

we only use a single interface. 

We also considered the throughput of video traffic streamed concurrently with loading the 

webpages. Figure 13 shows the achieved throughput of video traffic, which is an indicator of 

the video QoS experienced by the end user. The figure shows three results: the video 

throughput achieved if we only use a single interface; the throughput achieved when using our 

WRR-based load balancing approach; and the Reference case, where there is no web traffic 

and video traffic has exclusive access to the available link capacity. 

http://doi.org/10.18080/ajtde.v6n4.166
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Figure 12. Mean PLT for Web and Video Traffic over QUIC/UDP (Static Link Capacity Scenario) 

 
Figure 13. Throughput of Video Flows over QUIC/UDP (Static Link Capacity Scenario) 

In summary, we can see that our load balancing mechanism strikes a good balance of handling 

competing web and video flows, and can achieve a significant reduction in page load time for 

web traffic, while increasing the video quality compared to the single interface case. 

6. Load Balancing Experiment — Dynamic Link Capacity 

In the previous section, we evaluated the concept of flow-based load balancing using a realistic 

traffic scenario of web-browsing. However, we considered the somewhat unrealistic scenario 

of static link capacities, which we used as a baseline case. In this section, we will consider a 

more realistic link bandwidth scenario. For this, we aim to use traffic traces from real wireless 

networks (WiFi and 4G) and then use these to emulate realistic links in our experiment. 

While we were able to find a number of published papers and corresponding traffic traces for 

either WiFi or 3G/4G networks, such as in Netravali et al. (2015), we were not able to find any 

dataset which provides link bandwidth measurements for both WiFi and 3G/4G at the same 

time and location. However, this is exactly what we need, if we want to evaluate the potential 

of load balancing traffic across these types of networks. 

To address this gap, we performed our own measurements. Our approach and the gathered 

data are discussed in the following section. 

http://doi.org/10.18080/ajtde.v6n4.166
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Figure 14. Bandwidth Measurement Path 

6.1 WiFi and 4G/LTE Bandwidth Measurement 

We performed our bandwidth measurements on the St Lucia campus of the University of 

Queensland (UQ). For this measurement, we walked across the campus while recording the 

link capacity of both the UQ WiFi network, as well as the Telstra 4G/LTE network, in 1 second 

intervals. The location of each measurement point was recorded using GPS. Figure 14 shows 

the path that was taken for our measurement. The path includes both indoor segments 

(starting inside building 78), as well as outdoor segments, giving a broad range of wireless link 

conditions. The duration of the measurement experiment is 400 seconds. 

The bandwidth measurements were performed using iperf (available on https://iperf.fr/), 

with an iperf server running in our networking lab. located on campus. Given the high-speed 

campus network, it is safe to assume that our bandwidth measurement corresponds to the 

last-hop wireless link, since it is the path bottleneck. 

For the experiment, we used two identical laptops (Dell Latitude E5470, Intel Core i5-2.3GHz, 

8GB RAM, Ubuntu Linux 14.04), carried by the experimenter in a backpack. One laptop was 

equipped with a USB-based 4G/LTE modem (MF823). For the WiFi measurement, we used 

the laptop’s built-in WiFi interface (Intel AC8260, 802.11a/g/n/ac). 

For the iperf server, we used a Dell PowerEdge R320, Intel Xeon 2.2GHz, 32GB RAM, running 

the same version of Ubuntu Linux as on the laptops. 

The measured bandwidth dataset is shown in Figure 15. We can see that, for the first 2 minutes 

of the measurements, network throughput is highly dynamic, with WiFi having a higher 

capacity up 160 Mbps, while LTE/4G has a capacity of well below 10 Mbps. This is as expected, 

since it corresponds to the indoor segment of the measurement path. For the rest of the 

measurement, taken outdoors, we see that 4G/LTE provides a relatively steady capacity of 

around 30 Mbps. In contrast, WiFi fluctuates highly and with mostly a lower capacity, and 

http://doi.org/10.18080/ajtde.v6n4.166
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with some sections that have no throughput at all. We will use this data set for link emulation 

in our flow-based load balancing experiments discussed below. 

 
Figure 15. UQ Measured Bandwidth 

6.2 Results 

The testbed and scenario for this experiment are the same as discussed in Section 5 and shown 

in Figure 8. The only difference is that, instead of using a static link capacity for the two links 

(eth0-GW0, eth1-GW1), we now emulate the dynamic capacities of these links based on our 

measured data set (Figure 15). As before, we use the Linux tc tool for link emulation. Every 

second, tc is called with the corresponding link emulation parameter, i.e. bandwidth. In our 

scenario, link eth0-GW0 corresponds to the WiFi link, and link eth1-GW1 to the 4G/LTE link. 

We again measure the page load time (PLT) for the Alexa top 100 websites. 

In this experiment, we do this by continuously loading the same page for the entire 400 s 

duration of the experiments, and we record the average PLT for the period. 

We considered three scenarios: using WiFi only; using 4G/LTE only; and using flow-based 

load balancing across both links. As in our initial experiment, we used a Weighted Round 

Robin (WRR) approach to load balancing. The difference in the dynamic case is that the 

weights are updated every second, based on the bandwidth data of the different links. 

Figure 16 shows the CDF graph of the average page load time across all the 100 websites. The 

figure shows the results for the load balancing case (WRR) as well as for the two single-

interface scenarios (LTE and WiFi). We can see that the load balancing (WRR) approach 

provides a significant reduction in page load time compared to both single-interface cases. For 

WRR, 50% of downloads are completed in under 3.9 s. The corresponding numbers for WiFi 

and LTE are 6.3 s and 4.8 s, respectively. Figure 17 further shows the mean PLT values for the 

three cases. We see that, for the single-link case, LTE achieves an average of 6.7 s, compared 

http://doi.org/10.18080/ajtde.v6n4.166
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to 8.6 s for WiFi. This is consistent with Figure 15, which shows that LTE has a consistently 

high bandwidth most of the time, compared to the more patchy performance of WiFi. Most 

importantly, we see that flow-based load balancing using simple weighted round robin (WRR) 

achieves a further reduction in PLT, with an average of 5.8 s. This represents an almost 33% 

reduction compared to WiFi, and a more than 13% improvement over LTE. 

 
Figure 16. CDF of PLT for Web Traffic over TCP (Dynamic Link Capacity Scenario) 

In summary, we have demonstrated that flow-based load balancing using simple weighted 

round robin has the potential to make efficient use of multiple network interfaces on end-

hosts. Our experiments have shown this for the important use case of web traffic. 

 
Figure 17. Mean PLT for Web Traffic over TCP (Dynamic Link Capacity Scenario) 

7. Related Work 

Probably the most well-known traditional approach to load balance traffic on multi-home 

hosts is MPTCP (Ford et al., 2015). The protocol distributes TCP traffic over multiple network 

interfaces and end-to-end paths, and it can do this on a packet-by-packet basis. MPTCP 

requires deployment at both the client and server end, since it is not compatible with legacy 

TCP. As a result, MPTCP has achieved only limited adoption and deployment so far. Stream 

http://doi.org/10.18080/ajtde.v6n4.166


Australian Journal of Telecommunications and the Digital Economy 
 

Australian Journal of Telecommunications and the Digital Economy, ISSN 2203-1693, Volume 6 Number 4 December 2018 
Copyright © 2018 http://doi.org/10.18080/ajtde.v6n4.166 93 

Control Transmission Protocol (SCTP) (Stewart, 2007) is another transport layer protocol that 

supports multi-homing. Similar to MPTCP, SCTP requires support from both the client and 

server ends, and hence has found only very limited use. The key benefit of our flow-based load 

balancing approach is that it is a client-side only approach, which can easily be deployed. As a 

trade-off, the level of granularity is reduced (flow vs packet). Despite this, we demonstrated 

that our approach can outperform MPTCP for the web traffic use case. 

A number of papers have proposed to use the SDN paradigm and OpenFlow to load balance 

network traffic. These works have mainly focused on load balancing in the network 

infrastructure and the server side (R. Wang et al., 2011; Handigol et al., 2009), which is in 

contrast to our approach. 

The authors in Yap et al. (2012) use OpenFlow to control the network traffic in multi-homed 

Android hosts. The approach discusses different network functionalities, such as network 

hand-off, dynamic interface selection, and interface aggregation. However, the work does not 

address the specific problem of load balancing. Another point of difference is that the 

implementation of these functionalities requires support from both ends of the network path. 

Another technology that allows using multiple network interfaces on end-hosts is Apple’s Wi-

Fi Assist, described on https://support.apple.com/en-au/HT205296, which switches to the 

cellular connection in case of a poor WiFi connection. This approach essentially does a vertical 

hand-off between the two networks, and does not allow for dynamically load balancing traffic 

and using both interfaces simultaneously. This is in contrast to the approach discussed in this 

paper. 

8. Conclusions 

In this paper, we have explored the concept of flow-based load balancing of network traffic 

across multiple interfaces on multi-homed hosts. The key benefit of this approach, compared 

to alternative solutions such as MPTCP, is that it is a client-side-only solution. Our approach 

demonstrates the capability to efficiently control and load balance HTTP flows over both TCP 

and QUIC/UDP. Our evaluation specifically focuses on the important use cases of web traffic, 

as well as simultaneous web and video traffic. Our analysis of the Alexa top 100 websites in 

regards to their flow distribution showed the potential for the concept of flow-based load 

balancing. We experimentally evaluated the concept via our OpenFlow-based implementation, 

considering static and realistic dynamic link capacity scenarios. Our results showed a 

significant performance improvement in terms of reduction in page load time, as well as 

increased throughput and quality of video traffic. 

http://doi.org/10.18080/ajtde.v6n4.166
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