
Published on Telsoc (https://telsoc.org)
Home > S-MANAGE Protocol for Provisioning IoT Applications on Demand

S-MANAGE Protocol for Provisioning IoT Applications on Demand

Abstract

Internet of Things (IoT)-based services have started making an impact in various domains,
such as agriculture, smart farming, smart cities, personal health, and critical infrastructures.
Sensor/IoT devices have become one of the indispensable elements in these IoT systems and
services. However, their development is restricted by the rigidity of the current network
infrastructure, which accommodates heterogeneous physical devices. Software-Defined
Networking-Network Functions Virtualization (SDN-NFV) has emerged as a service-enabling

Thi Minh Chau Nguyen [1]

University of Technology Sydney, Faculty of Engineering & IT

Doan B. Hoang [2]

University of Technology Sydney

JTDE - Vol 7, No 3 - September 2019 [3]

[4]

 92 [5]

1

https://telsoc.org
https://telsoc.org/
https://telsoc.org/journal/author/thi-minh-chau-nguyen
https://telsoc.org/journal/author/doan-b-hoang
https://telsoc.org/journal/jtde-v7-n3
https://www.addtoany.com/share#url=https%3A%2F%2Ftelsoc.org%2Fjournal%2Fjtde-v7-n3%2Fa185&title=S-MANAGE Protocol for Provisioning IoT Applications on Demand
https://telsoc.org/printpdf/2538?rate=zGyRmEV8-NpFifRxoXhl6izS-B8ymv6LThcxcw4m0fA
https://telsoc.org/sites/default/files/images/tja/185_fig1.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig2.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig3.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig4.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig5.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig6.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig7.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig8.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig9.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig10.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig11.jpg

solution, supporting network and network function programmability. Provisioning IoT
applications on demand is a natural application of programmability. However, these
technologies cannot be directly deployed in the sensing/monitoring domain due to the
differences in the functionality of SDN network devices and sensor/IoT devices, as well as the
limitation of resources in IoT devices. This paper proposes an S-MANAGE protocol that
preserves the SDN-NFV paradigm but provides a practical solution in controlling and
managing IoT resources for provisioning IoT applications on demand. S-MANAGE is proposed
as a new southbound protocol between the software-defined IoT controller and its IoT
elements. The paper presents the design of S-MANAGE and demonstrates its use in
provisioning IoT services dynamically.

Introduction
An Internet of Things (IoT) environment accommodates numerous IoT devices (we use â IoT
devicesâ to include networked sensors in this paper) with various sensing, computing,
communicating, actuating capabilities, and resources. The number of IoT devices in the world is
predicted to be about 6.58 billion by 2020 (Perera et al., 2014 [6]). Deployment of an IoT application
can become challenging owing to large geographical coverage of the application, limitation of
resources of IoT devices, heterogeneity of the environment, and a huge number of these devices (Li,
Xu & Zhao, 2018 [7]). IoT applications often overlay and share the deployments of IoT devices, and
this presents difficulties and challenges in the interaction and sharing of information between the
devices and the applications (Li, Xu & Zhao, 2018 [7]). Therefore, many efforts have been put into
programming IoT devices to meet IoT application demands (Javed et al., 2018 [8]).

Among solutions to the programmability of Wireless Sensor Networking/Internet of Things (WSN/IoT)
systems, many proposals have taken advantage of the Software-Defined Networking (SDN)
paradigm (Bera, Misra & Vasilakos, 2017 [9]). The SDN provides solutions to programÂ mability,
agility, flexibility and end-to-end connectivity challenges, which are associated with management of
real-time traffic flows and dynamic traffic patterns (Deva Priya & Silas, 2019 [10]). The SDN approach
addresses many existing problems concerning network management and provisioning resources
required by network services. It can change the functionality of physical networks as well as devices
in real time to meet requirements of IoT applications (Sood, Yu & Xiang, 2016 [11]). The SDN principle
separates the network control plane from the data plane of networking devices and allows the
provision of on-demand services through a programmable and logically centralised controller.
Autonomous management of network devices is enabled under SDN. The SDN architecture
comprises three main planes, which are application plane, control plane, and data plane. The control
plane centrally controls and manages the behaviour of the whole network in the data plane via a
Southbound Interface (SBI). To provide network services to the application plane, it uses a
Northbound Interface (NBI) to expose the abstraction of the underlying network.

2

https://telsoc.org/journal/jtde-v7-n3/a185#Perera_etal_2014
https://telsoc.org/journal/jtde-v7-n3/a185#Li_Xu_Zhao_2018
https://telsoc.org/journal/jtde-v7-n3/a185#Li_Xu_Zhao_2018
https://telsoc.org/journal/jtde-v7-n3/a185#Javed_etal_2018
https://telsoc.org/journal/jtde-v7-n3/a185#Bera_Misra_Vasilakos_2017
https://telsoc.org/journal/jtde-v7-n3/a185#DevaPriya_Silas_2019
https://telsoc.org/journal/jtde-v7-n3/a185#Sood_Yu_Xiang_2016

However, challenges remain when applying the SDN paradigm to the constrained WSN/IoT (Luo,
Tan & Quek, 2012 [12]). As a fundamental element of the underlying resources that provide necessary
data for IoT applications, an IoT system must of necessity not only control and manage the
underlying resources but also orchestrate them to satisfy application demands. However,
architectural solutions for provisioning various IoT applications are still immature. A majority of the
proposed approaches are vertically integrated, so it is difficult for the infrastructure to handle various
IoT application demands that require horizontal capabilities from other subsystems. While many
attempts have been made to address IoT platform architectures and to provision IoT applications on
demand, challenging issues remain: they include scalable and dynamic resource discovery and
composition; context-awareness; integration of intelligence; interoperability; reliability; security and
privacy; and system-wide scalability (Razzaque et al., 2016 [13]). In this paper, we propose the S-
MANAGE protocol as an enabler of the software-defined Internet of Things (SD-IoT) model,
suggested in our previous work (Nguyen, Hoang & Dang, 2017 [14]).

The SD-IoT model adopts SDN and Network Functions Virtualization (NFV) principles and deploys
these technologies to IoT devices to provide IoT applications on demand. However, it is not feasible
to completely and directly apply the SDN technique to the resource-limited WSN/IoT environment,
owing to its constraints (Kobo, Abu-Mahfouz & Hancke, 2017 [15]). In the model, the NFV technique is
deployed to realise software-defined virtual sensors as a representation of the underlying IoT
resources. This technology is thus applied readily to the WSN/IoT environment for creating a virtual
representation of IoT devices that are utilised by multiple IoT applications simultaneously. This virtual
representation offers a solution to enrich the features of limited IoT devices. By applying both SDN
and NFV principles in the proposed SD-IoT model, diverse underlying sensor nodes can be
programmed in accordance with IoT application requests.

In the SD-IoT model, the S-MANAGE protocol has been proposed as a communication bridge
between the SD-IoT controller and the software-defined virtual sensor (SDVS) in each cluster. The
controller sets up and configures the SDVS by using S-MANAGE, which is designed to deal with the
constraints of IoT systems. It should be emphasised that the SDN OpenFlow protocol was designed
to handle SDN network (routing) devices and it is not suitable for resource-constrained IoT devices,
whose mission is different from that of SDN routers and switches. Furthermore, a separate protocol
such as OF-CONFIG is often required to configure the network devices, and this introduces
complexity to already constrained IoT devices. This paper investigates the design and the
implementation of S-MANAGE. S-MANAGE is designed both to configure SDVSs and to control the
behaviour of the underlying networked IoT resources. Major contributions of this paper are as
follows:

1. It proposes a new southbound S-MANAGE protocol for programming the behaviour and
configurational management of software-defined virtual sensors and their associated physical
devices.

2. It proposes a programmability approach to provisioning IoT applications on demand.
3. It describes an implementation of the proposed protocol in the context of a software-defined

Internet of Things system and provides implementation results.

The remainder of the paper is organised as follows. Section II reviews related work. Section III
describes the overall SD-IoT architecture. Section IV presents the design and the specification of the
S-MANAGE protocol in terms of packet format, packet type, forwarding table, and configuring table.
Section V describes an implementation scenario and evaluates its performance. Section VI
concludes the paper.

3

https://telsoc.org/journal/jtde-v7-n3/a185#Luo_Tan_Quek_2012
https://telsoc.org/journal/jtde-v7-n3/a185#Razzaque_etal_2016
https://telsoc.org/journal/jtde-v7-n3/a185#Nguyen_Hoang_Dang_2017
https://telsoc.org/journal/jtde-v7-n3/a185#Kobo_AbuMahfouz_Hancke_2017

Related Work
The most challenging task in applying the SDN paradigm to the WSNs/IoT environment is the design
of the communication interface between the SDN-based controller and underlying IoT devices.
However, existing proposals mainly suggest modification to the well-known OpenFlow SBI without an
actual implementation: for example, Sensor OpenFlow (Luo, Tan & Quek, 2012), and SDWN
(Costanzo et al., 2012 [16]). The feasibility of application of SDN to WSNs has been demonstrated in
the SDN-WISE (Galluccio et al., 2015 [17]) proposal. The SDN-WISE SBI has been designed in accord
with the OpenFlow protocol, thus enabling programmability of a WSN sink nodeâ s forwarding
behaviour. The main components of the protocol are described and the design is evaluated via a real
implementation. However, its main aim is to program a nodeâ s forwarding behaviour without concern
for programming a sensor nodeâ s functionality. The details of these proposals are discussed in our
previous work (Nguyen, Hoang & Chaczko, 2016 [18]).

Another work (Mahmud & Rahmani, 2011 [19]) deploys the OpenFlow technology in a WSN to enable
a share of IoT resources for larger scale networks. They propose flow-sensors that communicate
with an access point via the OpenFlow protocol. Their implementation results demonstrate how
OpenFlow can be of benefit in controlling and monitoring sensor traffic flow, but there is no effort to
make the OpenFlow protocol suitable for constrained sensor nodes.

Device and network management has been considered by the soft-WSN (Bera et al., 2016 [20])
proposal. The proposed architecture is in accordance with the SDN paradigm and provides a network
and device management approach for provisioning IoT application-aware services. However, the
focus is on the design of the controller and the sensor node architecture. The controller is designed
with two management policies, topology and device management. The communication between the
two entities is based on traditional protocols, IEEE 802.15.4 and IEEE 802.11. There is no effort to
solve the complexity of deployment of flow tables to the sensor nodes.

Software-Defined IoT Model
To reap the benefits of the SDN paradigm, the SD-IoT model is also structured in three layers â
application, control, and data â as depicted in Figure 1.

The application layer is where developers can deploy their IoT applications without knowledge of the
underlying IoT infrastructure.

The control layer accommodates the SD-IoT controller and its database. It is a bridge between the
application layer and the data layer. It provides the application layer with a global view of the
underlying resources as well as an efficient interface to control the underlying IoT resources. At the
same time, it provides the underlying resources with an interface for updating their status and
attributes, as well as their sensor services. With the knowledge of both requirements for and
capabilities of the IoT resources, it can provide sensor services for IoT applications on demand.

The data layer hosts IoT devices or IoT infrastructure. Different from the SDN data layer, the SD-IoT
data layer is designed with two sub-layers, called virtual and physical data layers. The virtual data
layer is proposed as an interface between the SD-IoT controller and the physical IoT devices. The
virtual data layer enables the controller to manage and control the underlying IoT resources in the
physical data layer.

[21]

Figure 1. SD-IoT architecture
4

https://telsoc.org/journal/jtde-v7-n3/a185#Costanzo_etal_2012
https://telsoc.org/journal/jtde-v7-n3/a185#Galluccio_etal_2015
https://telsoc.org/journal/jtde-v7-n3/a185#Nguyen_Hoang_Chaczko_2016
https://telsoc.org/journal/jtde-v7-n3/a185#Mahmud_Rahmani_2011
https://telsoc.org/journal/jtde-v7-n3/a185#Bera_etal_2016

SD-IoT controller
The SD-IoT controller is responsible for i) processing application requests; ii) orchestrating
resources; iii) updating knowledge of the underlying resources; and iv) controlling and managing the
underlying resources according to IoT application demands.

To handle these responsibilities, the controller houses several core modules: application handler,
resources manager and orchestrator, configuration manager, and a database for storing information
concerning the underlying resources.

Specifically, the SD-IoT controller makes it possible for the application layer to specify its demands
via an NBI. The controller interprets these requirements into the SD-IoT resource-specific language
in order to orchestrate the resources to meet the IoT applicationsâ requirements. To configure the
underlying resources, the controller makes use of a southbound interface (SBI) defining resource-
specific messages to configure the devices.

S-MANAGE protocol
The S-MANAGE protocol is proposed as an SBI between the SD-IoT controller and the virtual data
layer. The protocol allows the controller to communicate with software-defined virtual sensors
(SDVSs) in this layer. Moreover, via S-MANAGE, the controller can collect statistics regarding the
physical IoT devices. It defines the message structure and message types exchanged between the
controller and the virtual layer. These messages are for configuration management and control of
behaviour of SDVSs.

Software-defined virtual sensor (SDVS)
Software-defined virtual sensors (SDVSs) are defined as representatives of physical/software sensor
nodes or IoT devices located in the physical layer. It is configured with core features and attributes of
a physical sensor node, and with a software-defined function (SDF). The core modules enable the
SDVS to behave as the represented physical IoT device; the modules can interact with the
represented devices via device-specific protocols. In addition, the SDF allows the controller to
enhance the SDVS with processing, computing or forwarding functions. In particular, the forwarding
and configuring functions are implemented in the SDVS as SDFs. The SDVS is connected to its
underlying IoT device and acts on behalf of the represented device. In addition, it is installed with S-
MANAGE protocol features, so it can communicate with the controller. In summary, an SDVS can be
considered as a software layer that enriches its represented physical sensor/IoT device, allowing the
SD-IoT controller to configure the device and program its behaviour. The design and implementation
of SDVSs is the topic of another paper.

S-MANAGE Protocol

5

In traditional IP networks, routers are used to relay packets (or datagrams) according to the lookup
table determined by a routing protocol. Packets are treated as independent elements not related to
other packets that may belong to the same source-destination connection. Traffic flow is normally
associated with packets belonging to an end-to-end TCP connection. In order to completely specify a
flow at a router, a large number of identifiers are needed, including transport layer ID, network layer
IP address, VLAN ID, MAC layer ID, and router port IP address. As a consequence, a flow in the
OpenFlow protocol requires some 12 matching parameters to be identified. Clearly, this is not
needed in sensor/IoT networks where the end devices are not routing devices in the traditional
network. Many devices do not use TCP/IP; direct deployment of OpenFlow in WSN/IoT networks is
not appropriate. Furthermore, the OpenFlow SDN network still requires OF-CONFIG or other
protocols for device configuration. What we need is a streamlined protocol in WSN/IoT networks that
can handle both configuration of the IoT devices and simple types of sensed data, but in the same
spirit as flow in OpenFlow. S-MANAGE protocol is proposed to do just that. As the southbound
protocol, the S-MANAGE protocol is proposed as a southbound interface between the SD-IoT
controller and the virtual data layer. Via the SBI, the controller can both manage and configure the
SDVS in this layer.

The S-MANAGE protocol is for managing and programming the SDVSs within the virtual data layer
and indirectly via them to configure their represented physical devices. S-MANAGE makes it possible
for the controller to program sensors or IoT devices, not only their forwarding behaviour but also
other functionality.

The protocol is proposed according to the spirit of two protocols, OpenFlow (ONF, 2012a [22]) and OF-
CONFIG (ONF, 2012b [23]). OpenFlow focuses on flow rules for setting, modification, and deletion, or
adding rules for controlling forwarding behaviour of OpenFlow switches. Meanwhile, OF-CONFIG
enables configuring an OpenFlow Switch itself as the setting of port number, IP address, or
interfaces.

The protocol enables the management and configuration of representations of IoT devices to be
based on two proposed instruction tables, called forwarding and configuring tables. The forwarding
table instructs an SDVS on how to handle an arriving packet, while the configuring table guides the
SDVS to configure its represented underlying nodes.

The protocol allows the controller to i) install instruction tables on the SDVS for configuration
purposes, ii) get information concerning the SDVSâ s features, functions, and the status of its
underlying sensors, and iii) collect statistics associated with the SDVSâ s operation, such as the
number of processed packets or sensor services required by IoT applications.

In addition, via the protocol, the SDVS is able to i) update the controller with its status and attributes,
and ii) ask for instructions on processing an incoming packet or configuring its underlying IoT
devices.

S-MANAGE defines communication methods between the controller and an SDVS. It specifies
exchanged message types between the two entities, the message format, the structure of instruction
tables, and how the SDVS is programmed and should operate based on these tablesâ instructions.
Details of the protocol design are described in the following sections.

S-MANAGE packet header

6

https://telsoc.org/journal/jtde-v7-n3/a185#ONF_2012a
https://telsoc.org/journal/jtde-v7-n3/a185#ONF_2012b

The S-MANAGE packet is comprised of a header and a payload. All S-MANAGE messages begin
with an S-MANAGE header, as depicted in Figure 2. The header size is 10 bytes. It includes the
following parts:

Source Address (2 bytes) is an address of a source sending a packet.
Destination Address (2 bytes) is a destination address of a packet.
Next hop address (2 bytes) is an address of a hop in the list providing the path of a packet from
the source to the destination.
Type (1 byte) indicates a packet type.
Packet length (1 byte) indicates the length of a packet including its header and payload.
TTL (1 byte) is â time to liveâ of a packet. It is reduced by one at each hop.
Message ID (1 byte) is an identifier of the packet type.

[24]

Figure 2. S-MANAGE packet header

Message types
The payload carries the content of a packet. Different types of packets carry different kinds of
information that represent different purposes of a sender. Therefore, we define the following S-
MANAGE message types to achieve the expected purposes.

The S-MANAGE message types are grouped into three categories, i) controller to SDVS, ii)
asynchronous (SDVS to controller), and iii) symmetric (controller/SDVS to SDVS/controller).
However, due to the constrained resources of the sensor nodes or IoT devices, the number of
messages exchanged is minimised, and the messages are optimised.

Controller-to-SDVS message type

This message type is initiated by the SD-IoT controller and may or may not require a response. The
messages for installation of forwarding and configuring instructions on the SDVS need no responses
from the SDVS. This category includes messages such as SetForwardingInstruction,
SetConfiguringInstruction, and ModifyConfiguration packets. However, if the controller demands an
SDVSâ s attributes or status, it needs the SDVSâ s responses.

1. SetForwardingInstruction/SetConfiguringInstruction: Enable the controller to install a
forwarding/configuring instruction on an SDVSâ s forwarding/configuring table, and to respond
to an SDVSâ s requests for a forwarding/configuring instruction, respectively.

2. ModifyConfiguration: Modify a configuration instruction.
3. RequestFwdStats/RequestConfigStats: Get statistics of a forwarding or configuring instruction,

respectively.
4. ResponseFwdStats/ResponseConfigStats: Sent from an SDVS to the controller whenever the

SDVS receives a RequestFwdStats/RequestConfigStats message, respectively. These
messages include information about the statistics of an instruction table or an instruction in the
table.

5. RequestFeatures/ResponseFeatures: Get an SDVSâ s information about its sensor service list,
the servicesâ status, or the driver of the underlying IoT device.

Asynchronous message type (SDVS-to-Controller)

7

The message type is sent from an SDVS to the controller without any request from the controller. It
enables the SDVS to ask for instruction on handling incoming packets, as well as to update the
controller on changes in its underlying sensor nodes regarding their active/idle status or completion
of a required task.

1. Report packet: Report the status and behaviour of an SDVS. Particularly, the controller will be
updated by changes as follows.

1. Update the controller on its features (ReportFeatures).
2. Inform the controller about the removal of a configuration instruction from a configuring

table (ReportConfigurationRemove).
3. Notify the controller about a sensor nodeâ s battery level (ReportLowBatt).
4. Notify the controller that a sensor is at its maximum level of handling requests, so it is

unavailable to be assigned further tasks by the controller (ReportFullTask).
5. Inform the controller about the completion of a required service by an SDVS

(ReportCompletion).
2. Response message type: Send required services back to a required destination.
3. Request message type: An SDVS requests for an instruction for its operation. Particularly, if a

SDVS cannot find an instruction for handling an incoming packet, it sends a Request packet to
the controller, which uses its global knowledge of underlying network elements to respond to
the request.

Symmetric message type (Controller/SDVS-to-SDVS/Controller)

This message type is initiated by the controller or an SDVS and sent periodically without solicitation
from the other.

Hello message: This message is for an SDVS to notify its existence and for the controller to inform
the SDVS that it has not received an update for the current period.

Forwarding table specifications
The forwarding table contains instruction entries as rows of the table. This table is composed of three
main elements: matching window, action window, and statistic window (as presented in Figure 3).
The matching window is matched against an incoming packet. If a match is found, a corresponding
action in the action window is executed, then associated statistics are updated for the matching
packet. Otherwise, the packet is forwarded to the controller. The controller figures out how to
process the packet.

[25]

Figure 3. Forwarding table structure

Matching window

It provides information for extracting needed values from an arriving packet header. The extracted
values are matched against the specified values in the window to find a match for the incoming
packet. The window is comprised of four parameters:

1. ID: Indicates an ID of a matching window of an instruction. It is used when an incoming packet
needs to be matched with many matching fields since each forwarding entry allows matching of

8

a field in a packet header. It enables multiple header fields of an incoming packet to be
considered, while it does not require more memory for storing multiple matching windows for an
instruction entry.

2. Matching Field: Indicates which part of packet header is compared to the specified value in the
matching window, which means that not all packet header fields are necessarily matched
against a forwarding entry.

3. Operator: Indicates a comparison method between the matching header field and the matching
window Value. Operator values can be equal (=), different from (!=), higher than (>), higher
than or equal to (>=), less than (<), less than or equal to (<=).

4. Value: Is compared to the extracted header field.

Action window

The window indicates a corresponding action for an instruction entry. The action window is
composed of three parts: Action Type, value 1, and value 2. The value 1 and value 2 parts do not
have a specific name, since they may represent values of different matching fields according to the
action-type value.

1. Action Type: Indicates a type of action. Possible action types are FORWARD UNICAST,
FORWARD MULTICAST, FORWARD BROADCAST, DROP, MODIFY, or CONTINUE.

2. Value 1: Different action types result in different meanings of Value 1. For example, the
MODIFY action type requires a new value and the modified value. As for the CONTINUE
action, the forwarding instruction ID needs to be specified, so the incoming packet needs to be
matched against the instruction entry with the same ID. The FORWARD UNICAST, FOWARD
MULTICAST, and FOWARD BROADCAST action types demand the unicast, multicast, and
broadcast address, respectively.

3. Value 2: A replacement for the old value.

Statistic window

With a focus on efficiently programming of underlying IoT devices, their forwarding statistics would
be necessary for an update of the network status. When a match is found, statistics related to the
matched instruction are updated. The statistics are about Time To Live (TTL) and Counter.

TTL: Is a time to live of a forwarding instruction entry. It is decreased when the instruction table
is updated. Its value depends on the required amount of time of an application request. It is
gradually reduced to zero and is deleted when reaching zero.
Counter: Counts the number of packets matched against a forwarding entry.

Configuring table specifications
The configuring table provides an SDVS with instructions about configuration for its underlying IoT
devices. Its structure is composed of two main windows: configuring and statistics (as presented in
the Figure 4).

[26]

Figure 4. Configuring table structure

Configuring window

9

The configuring window includes three components: required services, required condition, and
required action.

1. Required service: Indicates the required sensor service.
2. Required conditions: Indicates the conditions related to the required service.

1. Frequency: Specifies how often the required sensor service is achieved.
2. Period: Is an executing period of an instruction.
3. Destination Address: Specifies the destination of results returned by an SDVS. If there is

no specified value, the destination is the controller.
3. Required action: Indicates an action type that is applied to the required service under the

specified conditions.

Statistic window

The window shows the number of configuring instructions, and their operating time associated with
an IoT application request. It includes information associated with an instruction, namely request ID,
TTL, Counter, Operation time, and Executed status.

1. Request ID: Indicates which application request is associated with the configuring instruction.
When the last configuring instruction of a ReqID is executed, the SDVS sends an
acknowledgment to the controller about its completion of the required task.

2. TTL: is the existing time of a configuring instruction and is defined by application requirements.
When it reaches zero, the related instruction is removed.

3. Counter: Shows the current number of requests for a sensor service and is used for updating a
state of an SDVS. The state indicates a busy level of the SDVS. The higher the state number,
the busier is the SDVS. The state is computed according to the total number of tasks that an
SDVS performs and is updated in accordance with the counter statistics.

4. Operation time: Shows timing data related to an execution of an IoT application request. It
provides information about the starting time and running time of an executed request. The
information is essential for the orchestration function of the controller.

5. Executed: Specifies if an instruction has been executed or not. The executed status marked
with â Yâ means executed and with â Nâ means not executed.

Implementation of S-MANAGE in Provisioning IoT Sensor Services
for IoT Applications

An implementation scenario
Our aim is provisioning IoT applications on demand by using the S-MANAGE protocol in the context
of the SD-IoT model. Any request for IoT services is dynamically processed by the SD-IoT model.
The system can orchestrate its underlying resources to handle multiple simultaneous sensor service
demands (as shown in the Figure 5). According to its knowledge of the capability of the underlying
resources, the system can i) obtain the availability of the resources and their current service-
provisioning tasks; ii) provide appropriate responses to an application request, such as meet the
request fully, or suggest an alternative that satisfies the request partially, or unable to provide the
services because of insufficient resources; iii) handle simultaneous application requests and deal
with conflicts among these requests; and iv) collect results corresponding to each application
request.

[27]

10

Figure 5. Implementation scenario

[28]

Figure 6. Implementation use case

For the sake of demonstration of a practical realization of the proposed protocol, we deploy the SD-
IoT model that controls and manages two clusters of sensor nodes. The two resources are in two
different locations. They can be orchestrated to provide sensor services for one or multiple IoT
applications on demand. For the case study, the two clusters represent two buildings within a
campus. Each building has four floors. Many types of sensors may be used on different floors, such
as movement, temperature, proximity, touch, and light sensors (as presented in Figure 6).

A GUI interface is designed to enable users to indicate their sensor service types of interest and also
to make specific demands for the required services. For example, they can indicate sensor services
of interest, how long and how often they want to obtain the services. Moreover, they can choose the
destination for the required services. An IoT application request is comprised of a set of these
requirements.

Implementation setup
The implementation is developed from our preliminary implementation (Nguyen, Hoang & Dang,
2018 [29]). We also make use of Java dependencies support from the open source SDN-WISE
platform (Milardo, 2017 [30]). To realise the operation of S-MANAGE, we build the SD-IoT model in
which S-MANAGE provides a communication approach between the SD-IoT controller and its IoT
elements. The SD-IoT model is a software platform written in Java and built in Netbeans 8.2. It is
connected to a database built in MySQL. We have implemented three main software components of
the proposed SD-IoT model: the SD-IoT controller, the S-MANAGE protocol, and the SDVS.

The control module includes classes responsible for analysing application requests,
orchestrating SDVS resources, generating instructions relating to the requests, networking and
communicating with the SDVS.
The Southbound interface module comprises classes for the construction of S-MANAGE
messages, forwarding tables, and configuring tables of SDVSs.
The virtual representation module is composed of classes for initiating instances of an SDVS.

We build a network where the controller communicates with its SDVSs. We establish a database in
MySQL to store and update information regarding the SDVSs in the network, such as their sensor
services, status, location, and attributes. The statistics from the forwarding and configuring tables are
used to update the attributes, the status of the SDVSs and their underlying IoT devices. The
database provides essential information for an operation of the controllerâ s core modules.

Implementation results
Implementation results demonstrate the expected features of the proposed S-MANAGE protocol in
provisioning IoT applications on demand. S-MANAGE makes it possible for the controller to instruct
IoT devices to achieve required services as well as forward results to required destinations. In
addition, the protocol enables the controller to collect statistical information from the underlying IoT
resources. Therefore, the controller can achieve the following results.

1. Programming its IoT resources via S-MANAGE according to an application request (Figure 7
and Figure 8).

11

https://telsoc.org/journal/jtde-v7-n3/a185#Nguyen_Hoang_Dang_2018
https://telsoc.org/journal/jtde-v7-n3/a185#Milardo_2017

2. Responding dynamically to an application request about the service provisioning capability of
the system according to its residual resources (as shown in Figure 9).

3. Handling simultaneous application requests and conflicts over these requests (as
demonstrated in Figure 10).

4. Obtaining and displaying the status of multiple on-going application requests (as presented in
Figure 11).

[31]

Figure 7. Status of the SDVS before its configuration

The programmable function of S-MANAGE is demonstrated in Figure 7 and Figure 8. The two figures
illustrate the status of an SDVS (SDVS03) before and after, respectively, it is programmed by the
controller. In each figure, the status of the SDVS is presented, its forwarding instructions in (a),
configuring instructions in (b), and sensor services status in (c). Differences between Figure 7 and
Figure 8 are: i) both the forwarding and configuring tables of the SDVS03 are installed with one new
instruction entry; and ii) changes in the status of the required service belonging to the SDVS. Via the
installed configuring instruction, the SDVS can achieve the required services. Deploying the
forwarding instruction, it knows how to forward results to the required destination. The result for the
request is to change the status of the sensor service SID05 from 1 (ON) (as shown in Figure 7-c) to 0
(OFF) (as shown in Figure 8-c).

[32]

Figure 8. Status of the SDVS after its configuration

Moreover, thanks to the S-MANAGE protocol, the controller can muster the available IoT resources
and orchestrate them to satisfy all the services whenever demanded. The S-MANAGE messages
allow the controller to collect essential information about the updated status of the underlying IoT
resources. If a request can be partially provisioned, the controller will also inform the application.
Depending on the reply from the application, the controller performs its tasks based on the status
table containing status of all SDVSs. The controller can program appropriate SDVSs to handle an
incoming request according to its status (availability and capability). As shown in Figure 9, the
controller provides appropriate responses to the application request in the case i) it can fully achieve
all the required services (see Figure 9-a); ii) it partially achieves the required services and provides
waiting time for obtaining the remaining required services (see Figure 9-b); or unable to provide the
services because of insufficient resources (see Figure 9-c).

[33]

Figure 9. Dynamic response from the controllerâ s resource orchestration to an application request

12

In addition, the system can handle multiple simultaneous application requests and resolve conflicts
among these requests. As presented in Figure 10, in the control panel of the controller, the
Resource Manager tab shows SDVSsâ locations and their state. The Application-Results tab
presents the current application requests and the status of the SD-IoT modelâ s IoT application
provision. Figure 10 illustrates three different states of the SDVSâ s functionality and corresponding
tasks. In state 1, SDVS01 and SDVS02 are providing services SID01 and SID05 for the two
application requests 1 and 2, respectively. Meanwhile, in state 2, SDVS02 receives another
application request number 3 for the service SID05. The request cannot be processed immediately
owing to the conflict between the two requests 2 and 3 for the same service. The request number 2
requires data from the sensor service, but the request number 3 requires deactivating the sensor
service Therefore, SDVS02 delays the request number 3 until it completes the request number 1. In
state 3, when the request number 1 is done, SDVS02 achieves the required service for the request
number 3.

[34]

Figure 10. Handling multiple application requests and solving conflicts among them

Figure 11 shows the status of all application requests and associated results. The Application-
Results tab presents information about all application requests (represented by the Req_ID) and their
execution status (see IsExecuted column: Y means Executed and N means Not-Executed).
Moreover, the tab also displays required parameters regarding service type, location, related action,
and associated results (see the Results column).

[35]

Figure 11. Status of on-going application requests and corresponding results

Conclusion
In this paper, we propose a design and implementation of the S-MANAGE protocol in order to
address challenges of configuring and programming an IoT network and devices in provisioning IoT
applications on demand. S-MANAGE is designed to configure functionalities of resource-constrained
IoT devices through their virtual representations (SDVSs) and program their forwarding behaviours.
Details of the design are provided. The implementation performance demonstrates the feasibility of
the proposed protocol and its application. The proposal also enables further research and
development on interoperability and orchestration of heterogeneous WSN/IoT devices for the
provision of diverse IoT applications on demand.

References
Bera, S., Misra, S., Roy, S. K., & Obaidat, M. S. (2016). Soft-WSN: Software-Defined WSN
Management System for IoT Applications. IEEE Systems Journal, 12(3), 2074-2081.
doi:10.1109/JSYST.2016.2615761 [36]

Bera, S., Misra, S., & Vasilakos, A. V. (2017). Software-Defined Networking for Internet of Things: A
Survey. IEEE Internet of Things Journal, 4(6), 1994-2008. doi:10.1109/JIOT.2017.2746186 [37]

Costanzo, S., Galluccio, L., Morabito, G., & Palazzo, S. (2012). Software Defined Wireless
Networks: Unbridling SDNs. 2012 European Workshop on Software Defined Networking (EWSDN),
October. doi:10.1109/EWSDN.2012.12 [38]

13

https://doi.org/10.1109/JSYST.2016.2615761
https://doi.org/10.1109/JIOT.2017.2746186
https://doi.org/10.1109/EWSDN.2012.12

Deva Priya, I., & Silas, S. (2019). A Survey on Research Challenges and Applications in Empowering
the SDN-Based Internet of Things. In: Peter, J., Alavi, A., & Javadi, B. (eds), Advances in Big Data
and Cloud Computing, Advances in Intelligent Systems and Computing, vol. 750, Singapore:
Springer. doi:10.1007/978-981-13-1882-5_39 [39]

Galluccio, L., Milardo, S., Morabito, G., & Palazzo, S. (2015). SDN-WISE: design, prototyping and
experimentation of a stateful SDN solution for WIreless SEnsor networks. 2015 IEEE Conference on
Computer Communications (INFOCOM), April-May. doi: 10.1109/INFOCOM.2015.7218418 [40]

Javed, F., Afzal, M. K., Sharif, M., & Kim, B. (2018). Internet of Things (IoT) Operating Systems
Support, Networking Technologies, Applications, and Challenges: A Comparative Review. IEEE
Communications Surveys & Tutorials, 20(3), 2062-2100. doi:10.1109/COMST.2018.2817685 [41]

Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A Survey on Software-Defined Wireless
Sensor Networks: Challenges and Design Requirements. IEEE Access, 5, 1872-1899.
doi:10.1109/ACCESS.2017.2666200 [42]

Li, S., Xu, L. D., & Zhao, S. (2018). 5G Internet of Things: A survey. Journal of Industrial Information
Integration, 10, 1-9. doi:10.1016/j.jii.2018.01.005 [43]

Luo, T., Tan, H.-P., & Quek, T. Q. S. (2012). Sensor OpenFlow: Enabling Software-Defined Wireless
Sensor Networks. IEEE Communications Letters, 16(11), 1896-1899. doi:
10.1109/LCOMM.2012.092812.121712 [44]

Mahmud, A., & Rahmani, R. (2011). Exploitation of OpenFlow in wireless sensor networks.
Proceedings of 2011 International Conference on Computer Science and Network Technology,
December. doi: 10.1109/ICCSNT.2011.6182029 [45]

Milardo, S. (2017). The stateful Software Defined Networking solution for the Internet of Things.
Retrieved from https://github.com/sdnwiselab/sdn-wise-java [46]

Nguyen, T. M. C., Hoang, D. B., & Chaczko, Z. (2016). Can SDN Technology Be Transported to
Software-Defined WSN/IoT? 2016 IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), December. doi: 10.1109/iThings-
GreenCom-CPSCom-SmartData.2016.â 63 [47]

Nguyen, T. M. C., Hoang, D. B., & Dang, T. D. (2017). Toward a programmable software-defined IoT
architecture for sensor service provision on demand. 2017 27th International Telecommunication
Networks and Applications Conference (ITNAC), Melbourne, November. doi:
10.1109/ATNAC.2017.8215419 [48]

Nguyen, T. M. C., Hoang, D. B., & Dang, T. D. (2018). A software-defined model for IoT clusters:
Enabling applications on demand. 2018 International Conference on Information Networking (ICOIN),
January. doi: 10.1109/ICOIN.2018.8343223 [49]

ONF [Open Networking Foundation]. (2012a). OpenFlow Switch Specification, Version 1.3.0 (Wire
Protocol 0x04), ONF TS-006, 25 June. Retrieved from https://www.opennetâ working.org/wp-
content/uploads/2014/10/openflow-spec-v1.3.0.pdf [50]

ONF [Open Networking Foundation]. (2012b). OpenFlow Management and Configuration Protocol
(OF-Config 1.1), Version 1.1, ONF TS-005, 25 June. Retrieved from
https://www.opennetworking.org/wp-content/uploads/2013/02/of-config-1.1.pdf [51]

14

https://doi.org/10.1007/978-981-13-1882-5_39
https://doi.org/10.1109/INFOCOM.2015.7218418
https://doi.org/10.1109/COMST.2018.2817685
https://doi.org/10.1109/ACCESS.2017.2666200
https://doi.org/10.1016/j.jii.2018.01.005
https://doi.org/10.1109/LCOMM.2012.092812.121712
https://doi.org/10.1109/ICCSNT.2011.6182029
https://github.com/sdnwiselab/sdn-wise-java
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.63
https://doi.org/10.1109/ATNAC.2017.8215419
https://doi.org/10.1109/ICOIN.2018.8343223
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/wp-content/uploads/2013/02/of-config-1.1.pdf

Perera, C., Liu, C. H., Jayawardena, S., & Min, C. (2014). A Survey on Internet of Things From
Industrial Market Perspective. IEEE Access, 2, 1660-1679. doi:10.1109/ACCESS.â 2015.2389854 [52]

Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middleware for Internet of
Things: A Survey. IEEE Internet of Things Journal, 3(1), 70-95. doi:10.1109/JIOT.â 2015.2498900 [53]

Sood, K., Yu, S., & Xiang, Y. (2016). Software-Defined Wireless Networking Opportunities and
Challenges for Internet-of-Things: A Review. IEEE Internet of Things Journal, 3(4), 453-463.
doi:10.1109/JIOT.2015.2480421 [54]

Article PDF:
 185-article_text-2097-1-11-20190905.pdf [55]

Copyright notice:

Copyright is held by the Authors subject to the Journal Copyright notice. [56]

Cite this article as:

Thi Minh Chau Nguyen, Doan B. Hoang. 2019. S-MANAGE Protocol for Provisioning IoT
Applications on Demand. JTDE, Vol 7, No 3, Article 185. http://doi.org/10.18080/JTDE.v7n3.185 [57].
Published by Telecommunications Association Inc. ABN 34 732 327 053. https://telsoc.org [58]

Programming Services

[59]

Software Defined Virtual Sensor SDVS

[60]

Network Functions Virtualisation NFV

[61]

Provisioning Services on Demand

[62]

Software Defined IoT Model

[63]

IoT Provisioning

[64]

Source URL:https://telsoc.org/journal/jtde-v7-n3/a185
Links
[1] https://telsoc.org/journal/author/thi-minh-chau-nguyen [2] https://telsoc.org/journal/author/doan-b-hoang [3]
https://telsoc.org/journal/jtde-v7-n3 [4]
https://www.addtoany.com/share#url=https%3A%2F%2Ftelsoc.org%2Fjournal%2Fjtde-v7-n3%2Fa185&title=S-
MANAGE%20Protocol%20for%20Provisioning%20IoT%20Applications%20on%20Demand [5]
https://telsoc.org/printpdf/2538?rate=zGyRmEV8-NpFifRxoXhl6izS-B8ymv6LThcxcw4m0fA [6] https://telsoc.org/journal/jtde-
v7-n3/a185#Perera_etal_2014 [7] https://telsoc.org/journal/jtde-v7-n3/a185#Li_Xu_Zhao_2018 [8]

15

https://doi.org/10.1109/ACCESS.2015.2389854
https://doi.org/10.1109/JIOT.2015.2498900
https://doi.org/10.1109/JIOT.2015.2480421
https://telsoc.org/sites/default/files/tja/pdf/185-article_text-2097-1-11-20190905.pdf
https://telsoc.org/copyright
http://doi.org/10.18080/ajtde.v7n3.185
https://telsoc.org
https://telsoc.org/topics/programming-services
https://telsoc.org/topics/software-defined-virtual-sensor-sdvs
https://telsoc.org/topics/network-functions-virtualisation-nfv
https://telsoc.org/topics/provisioning-services-demand
https://telsoc.org/topics/software-defined-iot-model
https://telsoc.org/topics/iot-provisioning
https://telsoc.org/journal/jtde-v7-n3/a185
https://telsoc.org/journal/author/thi-minh-chau-nguyen
https://telsoc.org/journal/author/doan-b-hoang
https://telsoc.org/journal/jtde-v7-n3
https://telsoc.org/printpdf/2538?rate=zGyRmEV8-NpFifRxoXhl6izS-B8ymv6LThcxcw4m0fA
https://telsoc.org/journal/jtde-v7-n3/a185#Perera_etal_2014
https://telsoc.org/journal/jtde-v7-n3/a185#Li_Xu_Zhao_2018
https://telsoc.org/journal/jtde-v7-n3/a185#Javed_etal_2018

https://telsoc.org/journal/jtde-v7-n3/a185#Javed_etal_2018 [9] https://telsoc.org/journal/jtde-v7-
n3/a185#Bera_Misra_Vasilakos_2017 [10] https://telsoc.org/journal/jtde-v7-n3/a185#DevaPriya_Silas_2019 [11]
https://telsoc.org/journal/jtde-v7-n3/a185#Sood_Yu_Xiang_2016 [12] https://telsoc.org/journal/jtde-v7-
n3/a185#Luo_Tan_Quek_2012 [13] https://telsoc.org/journal/jtde-v7-n3/a185#Razzaque_etal_2016 [14]
https://telsoc.org/journal/jtde-v7-n3/a185#Nguyen_Hoang_Dang_2017 [15] https://telsoc.org/journal/jtde-v7-
n3/a185#Kobo_AbuMahfouz_Hancke_2017 [16] https://telsoc.org/journal/jtde-v7-n3/a185#Costanzo_etal_2012 [17]
https://telsoc.org/journal/jtde-v7-n3/a185#Galluccio_etal_2015 [18] https://telsoc.org/journal/jtde-v7-
n3/a185#Nguyen_Hoang_Chaczko_2016 [19] https://telsoc.org/journal/jtde-v7-n3/a185#Mahmud_Rahmani_2011 [20]
https://telsoc.org/journal/jtde-v7-n3/a185#Bera_etal_2016 [21] https://telsoc.org/sites/default/files/images/tja/185_fig1.jpg
[22] https://telsoc.org/journal/jtde-v7-n3/a185#ONF_2012a [23] https://telsoc.org/journal/jtde-v7-n3/a185#ONF_2012b [24]
https://telsoc.org/sites/default/files/images/tja/185_fig2.jpg [25] https://telsoc.org/sites/default/files/images/tja/185_fig3.jpg
[26] https://telsoc.org/sites/default/files/images/tja/185_fig4.jpg [27]
https://telsoc.org/sites/default/files/images/tja/185_fig5.jpg [28] https://telsoc.org/sites/default/files/images/tja/185_fig6.jpg
[29] https://telsoc.org/journal/jtde-v7-n3/a185#Nguyen_Hoang_Dang_2018 [30] https://telsoc.org/journal/jtde-v7-
n3/a185#Milardo_2017 [31] https://telsoc.org/sites/default/files/images/tja/185_fig7.jpg [32]
https://telsoc.org/sites/default/files/images/tja/185_fig8.jpg [33] https://telsoc.org/sites/default/files/images/tja/185_fig9.jpg
[34] https://telsoc.org/sites/default/files/images/tja/185_fig10.jpg [35]
https://telsoc.org/sites/default/files/images/tja/185_fig11.jpg [36] https://doi.org/10.1109/JSYST.2016.2615761 [37]
https://doi.org/10.1109/JIOT.2017.2746186 [38] https://doi.org/10.1109/EWSDN.2012.12 [39] https://doi.org/10.1007/978-
981-13-1882-5_39 [40] https://doi.org/10.1109/INFOCOM.2015.7218418 [41] https://doi.org/10.1109/COMST.2018.2817685
[42] https://doi.org/10.1109/ACCESS.2017.2666200 [43] https://doi.org/10.1016/j.jii.2018.01.005 [44]
https://doi.org/10.1109/LCOMM.2012.092812.121712 [45] https://doi.org/10.1109/ICCSNT.2011.6182029 [46]
https://github.com/sdnwiselab/sdn-wise-java [47] https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.63
[48] https://doi.org/10.1109/ATNAC.2017.8215419 [49] https://doi.org/10.1109/ICOIN.2018.8343223 [50]
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf [51]
https://www.opennetworking.org/wp-content/uploads/2013/02/of-config-1.1.pdf [52]
https://doi.org/10.1109/ACCESS.2015.2389854 [53] https://doi.org/10.1109/JIOT.2015.2498900 [54]
https://doi.org/10.1109/JIOT.2015.2480421 [55] https://telsoc.org/sites/default/files/tja/pdf/185-article_text-2097-1-11-
20190905.pdf [56] https://telsoc.org/copyright [57] http://doi.org/10.18080/ajtde.v7n3.185 [58] https://telsoc.org [59]
https://telsoc.org/topics/programming-services [60] https://telsoc.org/topics/software-defined-virtual-sensor-sdvs [61]
https://telsoc.org/topics/network-functions-virtualisation-nfv [62] https://telsoc.org/topics/provisioning-services-demand [63]
https://telsoc.org/topics/software-defined-iot-model [64] https://telsoc.org/topics/iot-provisioning

16

https://telsoc.org/journal/jtde-v7-n3/a185#Bera_Misra_Vasilakos_2017
https://telsoc.org/journal/jtde-v7-n3/a185#DevaPriya_Silas_2019
https://telsoc.org/journal/jtde-v7-n3/a185#Sood_Yu_Xiang_2016
https://telsoc.org/journal/jtde-v7-n3/a185#Luo_Tan_Quek_2012
https://telsoc.org/journal/jtde-v7-n3/a185#Razzaque_etal_2016
https://telsoc.org/journal/jtde-v7-n3/a185#Nguyen_Hoang_Dang_2017
https://telsoc.org/journal/jtde-v7-n3/a185#Kobo_AbuMahfouz_Hancke_2017
https://telsoc.org/journal/jtde-v7-n3/a185#Costanzo_etal_2012
https://telsoc.org/journal/jtde-v7-n3/a185#Galluccio_etal_2015
https://telsoc.org/journal/jtde-v7-n3/a185#Nguyen_Hoang_Chaczko_2016
https://telsoc.org/journal/jtde-v7-n3/a185#Mahmud_Rahmani_2011
https://telsoc.org/journal/jtde-v7-n3/a185#Bera_etal_2016
https://telsoc.org/sites/default/files/images/tja/185_fig1.jpg
https://telsoc.org/journal/jtde-v7-n3/a185#ONF_2012a
https://telsoc.org/journal/jtde-v7-n3/a185#ONF_2012b
https://telsoc.org/sites/default/files/images/tja/185_fig2.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig3.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig4.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig5.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig6.jpg
https://telsoc.org/journal/jtde-v7-n3/a185#Nguyen_Hoang_Dang_2018
https://telsoc.org/journal/jtde-v7-n3/a185#Milardo_2017
https://telsoc.org/sites/default/files/images/tja/185_fig7.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig8.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig9.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig10.jpg
https://telsoc.org/sites/default/files/images/tja/185_fig11.jpg
https://telsoc.org/sites/default/files/tja/pdf/185-article_text-2097-1-11-20190905.pdf
https://telsoc.org/copyright
https://telsoc.org/topics/programming-services
https://telsoc.org/topics/software-defined-virtual-sensor-sdvs
https://telsoc.org/topics/network-functions-virtualisation-nfv
https://telsoc.org/topics/provisioning-services-demand
https://telsoc.org/topics/software-defined-iot-model
https://telsoc.org/topics/iot-provisioning

	S-MANAGE Protocol for Provisioning IoT Applications on Demand
	JTDE - Vol 7, No 3 - September 2019 [3]

	Introduction
	Related Work
	Software-Defined IoT Model
	SD-IoT controller
	S-MANAGE protocol
	Software-defined virtual sensor (SDVS)

	S-MANAGE Protocol
	S-MANAGE packet header
	Message types
	Controller-to-SDVS message type
	Asynchronous message type (SDVS-to-Controller)
	Symmetric message type (Controller/SDVS-to-SDVS/Controller)

	Forwarding table specifications
	Matching window
	Action window
	Statistic window

	Configuring table specifications
	Configuring window
	Statistic window

	Implementation of S-MANAGE in Provisioning IoT Sensor Services for IoT Applications
	An implementation scenario
	Implementation setup
	Implementation results

	Conclusion
	References

